All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 167393 by DrHZ last updated on 15/Mar/22
Answered by mindispower last updated on 15/Mar/22
∫02π(1+eix+e−ix)neinx3+eix+e−ixdx=InwewantRealIn=∫02π(e2ix+1+eix)neixe2ix+1+3eixdxu=eix=∫C1(x2+x+1)nx2+3x+1dx=−i∫C1f(x)dxC1={z∈C;∣z∣⩽1}x2+3x+1=0⇒x=−3−+52∣−3+52=a∣<1In=2iπRes(−if,a)=2π((a2+a+1)n2a+3)=2π((−2a)n2a+3)Re(In)=2π2a+3(−2a)n=2π5(5−3)n
Terms of Service
Privacy Policy
Contact: info@tinkutara.com