Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 167400 by infinityaction last updated on 15/Mar/22

Answered by Mathspace last updated on 16/Mar/22

I=(π/2)ln2 +∫_0 ^(π/2) ln(1+(1/2)cosx)dx  =(π/2)ln2 +f((1/2)) with f(a)=∫_0 ^(π/2) ln(1+acosx)dx  we take 0<a≤1  f^′ (a)=∫_0 ^(π/2) ((cosx)/(1+acosx))  =(1/a)∫_0 ^(π/2) ((1+acosx−1)/(1+acosx))dx  =(π/(2a))−(1/a)∫_0 ^(π/2) (dx/(1+acosx))(→tan((x/2))=t)  =(π/(2a))−(1/a)∫_0 ^1 ((2dt)/((1+t^2 )(1+a((1−t^2 )/(1+t^2 )))))  =(π/(2a))−(2/a)∫_0 ^1 (dt/(1+t^2 +a−at^2 ))  =(π/(2a))−(2/a)∫_0 ^1 (dt/(1+a+(1−a)t^2 ))  =(π/(2a))−(2/(a(1+a)))∫_0 ^1 (dt/(1+((1−a)/(1+a))t^2 ))(→(√((1−a)/(1+a)))t=y)  =(π/(2a))−(2/(a(1+a)))∫_0 ^(√((1−a)/(1+a)))    (((√((1+a)/(1−a)))dy)/(1+y^2 ))  =(π/(2a))−(2/(a(√(1−a^2 ))))arctan((√((1−a)/(1+a)))) ⇒  f(a)=(π/2)lna−2∫ ((arctan((√((1−a)/(1+a)))))/(a(√(1−a^2 ))))da +C  changement a=cosθ give  ∫  ((arctan((√((1−a)/(1+a)))))/(a(√(1−a^2 ))))da  =∫  ((arctan(tan((θ/2)))/(cosθ.sinθ))(−sinθ)dθ  =−∫  (θ/(2cosθ))dθ  ...be continued...

I=π2ln2+0π2ln(1+12cosx)dx=π2ln2+f(12)withf(a)=0π2ln(1+acosx)dxwetake0<a1f(a)=0π2cosx1+acosx=1a0π21+acosx11+acosxdx=π2a1a0π2dx1+acosx(tan(x2)=t)=π2a1a012dt(1+t2)(1+a1t21+t2)=π2a2a01dt1+t2+aat2=π2a2a01dt1+a+(1a)t2=π2a2a(1+a)01dt1+1a1+at2(1a1+at=y)=π2a2a(1+a)01a1+a1+a1ady1+y2=π2a2a1a2arctan(1a1+a)f(a)=π2lna2arctan(1a1+a)a1a2da+Cchangementa=cosθgivearctan(1a1+a)a1a2da=arctan(tan(θ2)cosθ.sinθ(sinθ)dθ=θ2cosθdθ...becontinued...

Commented by infinityaction last updated on 16/Mar/22

thank you sir

thankyousir

Answered by mindispower last updated on 16/Mar/22

2+cos(x)=(1/2)(4+e^(ix) +e^(−ix) )  =(1/(2e^(ix) ))(e^(2ix) +4e^(ix) +1)  a=−2−(√3),b=−2+(√3)  =(1/(2e^(ix) ))(e^(ix) −a)(e^(ix) −b)  ⇔∫_0 ^(π/2) ln((((e^(ix) −a))/(2e^(ix) )).(e^(ix) −b))dx  =(π/2)ln(2)−i((π^2 /8))+∫_0 ^(π/2) ln(e^(ix) −a)dx+∫_0 ^(π/2) ln(e^(ix) −b)dx  A=∫_0 ^(π/2) ln(e^(ix) −a)dx  =(π/2)ln(−a)+Σ_(k≥1) (1/k)∫_0 ^(π/2) (−((e^(ix) /a))^k )dx  =(π/2)(ln(−a))−Σ_(k≥1) (1/(ka^k ))((((i)^k −1)/(ki)))  =(π/2)ln(−a)+iΣ_(k≥1) {(((((i/a))^k )/k^2 ))−(((((1/a))^k )/k^2 ))}  =(π/2)ln(−a)+i(Li_2 ((i/a))−Li_2 ((1/a)))  B=∫_0 ^(π/2) ln(e^(ix) −b)=∫_0 ^(π/2) ixdx+∫_0 ^(π/2) ln(1−be^(−ix) )dx  =i((π^2 /8))−Σ_(k≥1) ∫_0 ^(π/2) (((be^(−ix) )^k )/k)dx  =i(π^2 /8)−Σ_(k≥1) ((b^k ((−i)^k −1))/(−ik^2 ))  =i(π^2 /8)−iΣ_(k≥1) (((−ib)^k −(b)^k )/k^2 )  =((iπ^2 )/8)−iLi_2 (−ib)+iLi_2 (b)  ∫_0 ^(π/2) ln(2+cos(x))dx=(π/2)ln(2)+(π/2)ln(−a)+i(Li_2 ((i/a))−Li_2 (−ib))  +i(Li_2 (b)−Li_2 ((1/a)))  (1/a)=b,(i/a)=−ib  =(π/2)ln(−2a)+i(Li_2 (ib)−Li_2 (−ib))  =(π/2)ln(−2a)−2Im(Li_2 (ib))  =(π/2)ln(4+2(√3))−2Im(Li_2 (i(−2+(√3)))

2+cos(x)=12(4+eix+eix)=12eix(e2ix+4eix+1)a=23,b=2+3=12eix(eixa)(eixb)0π2ln((eixa)2eix.(eixb))dx=π2ln(2)i(π28)+0π2ln(eixa)dx+0π2ln(eixb)dxA=0π2ln(eixa)dx=π2ln(a)+k11k0π2((eixa)k)dx=π2(ln(a))k11kak((i)k1ki)=π2ln(a)+ik1{((ia)kk2)((1a)kk2)}=π2ln(a)+i(Li2(ia)Li2(1a))B=0π2ln(eixb)=0π2ixdx+0π2ln(1beix)dx=i(π28)k10π2(beix)kkdx=iπ28k1bk((i)k1)ik2=iπ28ik1(ib)k(b)kk2=iπ28iLi2(ib)+iLi2(b)0π2ln(2+cos(x))dx=π2ln(2)+π2ln(a)+i(Li2(ia)Li2(ib))+i(Li2(b)Li2(1a))1a=b,ia=ib=π2ln(2a)+i(Li2(ib)Li2(ib))=π2ln(2a)2Im(Li2(ib))=π2ln(4+23)2Im(Li2(i(2+3))

Commented by infinityaction last updated on 17/Mar/22

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com