Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 167421 by infinityaction last updated on 16/Mar/22

Answered by mindispower last updated on 16/Mar/22

cot^2 (((kπ)/(2n+1)))=cot^2 (sπ)=(i((e^(is) +e^(−is) )/(e^(is) −e^(−is) )))^2 =  ⇒−cot^2 (sπ)=(((e^(2ia) +1)/(e^(2ia) −1)))^2   ⇒icot(sπ)p=((e^(2is) +1)/(e^(2is) −1))  ⇒e^(2is) =((1+ia)/(ia−1)),((e^(2is) )^(2n+1) −1)=0  ⇒(1+ia)^(2n+1) +(1−ia)^(2n+1) =0  ⇒Σ_(k=0) ^(2n+1)  (((2n+1)),((    k)) )((ia)^k +(−ia)^k )=0  ⇒Σ_(k=0) ^n  (((2n+1)),((    2k)) ).2(−1)^k a^(2k) =0  a^2 =tg^2 (((sπ)/(2n+1))),for som s∈[1,n]  ⇒tg^2 (((sπ)/(2n+1))) Root Of  2Σ_(k=0) ^n  (((2n+1)),((   2k)) )(−1)^k X^k =0  (−1)^n  (((2n+1)),((    1)) )X^n +Σ_(k=0) ^(n−1) (−1)^k  (((2n+1)),((     k)) )X^k =0  ⇔X^n +Σ_(k=0) ^(n−1) (((−1)^(k−n)  (((2n+1)),((   k)) ))/ (((2n+1)),((      1)) ))X^k =0

$${cot}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)={cot}^{\mathrm{2}} \left({s}\pi\right)=\left({i}\frac{{e}^{{is}} +{e}^{−{is}} }{{e}^{{is}} −{e}^{−{is}} }\right)^{\mathrm{2}} = \\ $$$$\Rightarrow−{cot}^{\mathrm{2}} \left({s}\pi\right)=\left(\frac{{e}^{\mathrm{2}{ia}} +\mathrm{1}}{{e}^{\mathrm{2}{ia}} −\mathrm{1}}\overset{\mathrm{2}} {\right)} \\ $$$$\Rightarrow{icot}\left({s}\pi\right){p}=\frac{{e}^{\mathrm{2}{is}} +\mathrm{1}}{{e}^{\mathrm{2}{is}} −\mathrm{1}} \\ $$$$\Rightarrow{e}^{\mathrm{2}{is}} =\frac{\mathrm{1}+{ia}}{{ia}−\mathrm{1}},\left(\left({e}^{\mathrm{2}{is}} \right)^{\mathrm{2}{n}+\mathrm{1}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{1}+\boldsymbol{{ia}}\right)^{\mathrm{2}\boldsymbol{{n}}+\mathrm{1}} +\left(\mathrm{1}−\boldsymbol{{ia}}\right)^{\mathrm{2}\boldsymbol{{n}}+\mathrm{1}} =\mathrm{0} \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:{k}}\end{pmatrix}\left(\left({ia}\right)^{{k}} +\left(−{ia}\right)^{{k}} \right)=\mathrm{0} \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\mathrm{2}{k}}\end{pmatrix}.\mathrm{2}\left(−\mathrm{1}\right)^{{k}} {a}^{\mathrm{2}{k}} =\mathrm{0} \\ $$$${a}^{\mathrm{2}} ={tg}^{\mathrm{2}} \left(\frac{{s}\pi}{\mathrm{2}{n}+\mathrm{1}}\right),{for}\:{som}\:{s}\in\left[\mathrm{1},{n}\right] \\ $$$$\Rightarrow{tg}^{\mathrm{2}} \left(\frac{{s}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\:{Root}\:{Of} \\ $$$$\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\mathrm{2}{k}}\end{pmatrix}\left(−\mathrm{1}\right)^{{k}} {X}^{{k}} =\mathrm{0} \\ $$$$\left(−\mathrm{1}\right)^{{n}} \begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\mathrm{1}}\end{pmatrix}{X}^{{n}} +\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{k}} \begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:{k}}\end{pmatrix}{X}^{{k}} =\mathrm{0} \\ $$$$\Leftrightarrow{X}^{{n}} +\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}−{n}} \begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:{k}}\end{pmatrix}}{\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}}{X}^{{k}} =\mathrm{0} \\ $$$$ \\ $$$$ \\ $$

Commented by infinityaction last updated on 16/Mar/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by infinityaction last updated on 16/Mar/22

sir the second part of this also has to be solved

$${sir}\:{the}\:{second}\:{part}\:{of}\:{this}\:{also}\:{has}\:{to}\:{be}\:{solved} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com