Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 167539 by Tawa11 last updated on 19/Mar/22

Suppose  x and y are real, such that,   log_4 x   =   log_6 y   =   log_9 (x + y),  find   (y/x)

Supposexandyarereal,suchthat,log4x=log6y=log9(x+y),findyx

Answered by Rasheed.Sindhi last updated on 19/Mar/22

 log_4 x = log_6 y = log_9 (x + y)=k(say)  x=4^k  ,y=6^k , x+y=9^k   4^k +6^k =9^k   ((4/9))^k +((6/9))^k =1  ((2/3))^(2k) +((2/3))^k =1  ((2/3))^k =u  u^2 +u−1=0  u=((−1±(√5) )/2)  ((2/3))^k =((−1±(√5) )/2)  (y/x)=(6^k /4^k )=((3/2))^k =(((2/3))^k )^(−1) =(((−1±(√5) )/2))^(−1)   =(2/(−1±(√5) ))∙((−1∓(√5) )/(−1∓(√5) ))=((−2(1±(√5) ))/(1−5))  =((1±(√5))/2)

log4x=log6y=log9(x+y)=k(say)x=4k,y=6k,x+y=9k4k+6k=9k(49)k+(69)k=1(23)2k+(23)k=1(23)k=uu2+u1=0u=1±52(23)k=1±52yx=6k4k=(32)k=((23)k)1=(1±52)1=21±51515=2(1±5)15=1±52

Commented by Tawa11 last updated on 19/Mar/22

God bless you sir.

Godblessyousir.

Answered by Rasheed.Sindhi last updated on 19/Mar/22

   log_4 x = log_6 y = log_9 (x + y)=k (say)  x=4^k  ,y=6^k ,    x+y=9^k ⇒4^k +6^k =9^k   1+(6^k /4^k )=(9^k /4^k )  1+((3/2))^k =((3/2))^(2k)   ((3/2))^(2k) −((3/2))^k −1=0  ((3/2))^k =u  u^2 −u−1=0  u=((1±(√5) )/2)  ((3/2))^k =((1±(√5) )/2)  (y/x)=(6^k /4^k )=((3/2))^k =((1±(√5) )/2)

log4x=log6y=log9(x+y)=k(say)x=4k,y=6k,x+y=9k4k+6k=9k1+6k4k=9k4k1+(32)k=(32)2k(32)2k(32)k1=0(32)k=uu2u1=0u=1±52(32)k=1±52yx=6k4k=(32)k=1±52

Terms of Service

Privacy Policy

Contact: info@tinkutara.com