Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16754 by ajfour last updated on 26/Jun/17

Commented by ajfour last updated on 26/Jun/17

Q.16748 (solution)   by fault it gets uploaded as   question.

$$\mathrm{Q}.\mathrm{16748}\:\left(\mathrm{solution}\right) \\ $$$$\:\mathrm{by}\:\mathrm{fault}\:\mathrm{it}\:\mathrm{gets}\:\mathrm{uploaded}\:\mathrm{as}\: \\ $$$$\mathrm{question}. \\ $$

Answered by ajfour last updated on 26/Jun/17

 equation of RC:   y=−(h/k)(x−a)      equation if AP:  x=h  H is their intersection, so   x_H =h,    y_H =−(h/k)(h−a)    therefore   H≡[h, (h/k)(a−h)]   equation of OL:   x=a/2   equation of ON:      y−(k/2)=−(h/k)(x−(h/2))   circumcenter (x_0 , y_0 )lies on both;  so  x_0 =a/2        y_0 =(k/2)−(h/k)((a/2)−(h/2))  hence   O≡[(a/2), (k/2)−(h/(2k))(a−h)]   OH^(→)  =r_H ^→ −r_O ^→       =[hi^� +(h/k)(a−h)j^� ]−[(a/2)i^� +((k/2)−(h/(2k))(a−h)]     =(h−(a/2))i^� +[((3h)/(2k))(a−h)−(k/2)]j^�   ..(i)  OA^(→) +OB^(→) +OC^(→)  = r_A ^→ +r_B ^→ +r_C ^→ −3r_O ^→    = (hi^� +kj^� )+(0i^� +0j^� )+(ai^� +0j)      −3[(a/2)i^� +((k/2)−(h/(2k))(a−h)]   =(h−(a/2))i^� +[((3h)/(2k))(a−h)−(k/2)]j^�      OA^(→) +OB^(→) +OC^(→)  = OH^(→)    [see (i)].

$$\:\mathrm{equation}\:\mathrm{of}\:\mathrm{RC}: \\ $$$$\:\mathrm{y}=−\frac{\mathrm{h}}{\mathrm{k}}\left(\mathrm{x}−\mathrm{a}\right)\:\:\: \\ $$$$\:\mathrm{equation}\:\mathrm{if}\:\mathrm{AP}:\:\:\mathrm{x}=\mathrm{h} \\ $$$$\mathrm{H}\:\mathrm{is}\:\mathrm{their}\:\mathrm{intersection},\:\mathrm{so} \\ $$$$\:\mathrm{x}_{\mathrm{H}} =\mathrm{h},\:\:\:\:\mathrm{y}_{\mathrm{H}} =−\frac{\mathrm{h}}{\mathrm{k}}\left(\mathrm{h}−\mathrm{a}\right) \\ $$$$\:\:\mathrm{therefore}\:\:\:\mathrm{H}\equiv\left[\mathrm{h},\:\frac{\mathrm{h}}{\mathrm{k}}\left(\mathrm{a}−\mathrm{h}\right)\right] \\ $$$$\:\mathrm{equation}\:\mathrm{of}\:\mathrm{OL}:\:\:\:\mathrm{x}=\mathrm{a}/\mathrm{2} \\ $$$$\:\mathrm{equation}\:\mathrm{of}\:\mathrm{ON}: \\ $$$$\:\:\:\:\mathrm{y}−\frac{\mathrm{k}}{\mathrm{2}}=−\frac{\mathrm{h}}{\mathrm{k}}\left(\mathrm{x}−\frac{\mathrm{h}}{\mathrm{2}}\right) \\ $$$$\:\mathrm{circumcenter}\:\left(\mathrm{x}_{\mathrm{0}} ,\:\mathrm{y}_{\mathrm{0}} \right)\mathrm{lies}\:\mathrm{on}\:\mathrm{both}; \\ $$$$\mathrm{so}\:\:\mathrm{x}_{\mathrm{0}} =\mathrm{a}/\mathrm{2} \\ $$$$\:\:\:\:\:\:\mathrm{y}_{\mathrm{0}} =\frac{\mathrm{k}}{\mathrm{2}}−\frac{\mathrm{h}}{\mathrm{k}}\left(\frac{\mathrm{a}}{\mathrm{2}}−\frac{\mathrm{h}}{\mathrm{2}}\right) \\ $$$$\mathrm{hence}\:\:\:\mathrm{O}\equiv\left[\frac{\mathrm{a}}{\mathrm{2}},\:\frac{\mathrm{k}}{\mathrm{2}}−\frac{\mathrm{h}}{\mathrm{2k}}\left(\mathrm{a}−\mathrm{h}\right)\right] \\ $$$$\:\overset{\rightarrow} {\mathrm{OH}}\:=\overset{\rightarrow} {\mathrm{r}}_{\mathrm{H}} −\overset{\rightarrow} {\mathrm{r}}_{\mathrm{O}} \\ $$$$\:\:\:\:=\left[\mathrm{h}\hat {\mathrm{i}}+\frac{\mathrm{h}}{\mathrm{k}}\left(\mathrm{a}−\mathrm{h}\right)\hat {\mathrm{j}}\right]−\left[\frac{\mathrm{a}}{\mathrm{2}}\hat {\mathrm{i}}+\left(\frac{\mathrm{k}}{\mathrm{2}}−\frac{\mathrm{h}}{\mathrm{2k}}\left(\mathrm{a}−\mathrm{h}\right)\right]\right. \\ $$$$\:\:\:=\left(\mathrm{h}−\frac{\mathrm{a}}{\mathrm{2}}\right)\hat {\mathrm{i}}+\left[\frac{\mathrm{3h}}{\mathrm{2k}}\left(\mathrm{a}−\mathrm{h}\right)−\frac{\mathrm{k}}{\mathrm{2}}\right]\hat {\mathrm{j}}\:\:..\left(\mathrm{i}\right) \\ $$$$\overset{\rightarrow} {\mathrm{OA}}+\overset{\rightarrow} {\mathrm{OB}}+\overset{\rightarrow} {\mathrm{OC}}\:=\:\overset{\rightarrow} {\mathrm{r}}_{\mathrm{A}} +\overset{\rightarrow} {\mathrm{r}}_{\mathrm{B}} +\overset{\rightarrow} {\mathrm{r}}_{\mathrm{C}} −\mathrm{3}\overset{\rightarrow} {\mathrm{r}}_{\mathrm{O}} \\ $$$$\:=\:\left(\mathrm{h}\hat {\mathrm{i}}+\mathrm{k}\hat {\mathrm{j}}\right)+\left(\mathrm{0}\hat {\mathrm{i}}+\mathrm{0}\hat {\mathrm{j}}\right)+\left(\mathrm{a}\hat {\mathrm{i}}+\mathrm{0j}\right) \\ $$$$\:\:\:\:−\mathrm{3}\left[\frac{\mathrm{a}}{\mathrm{2}}\hat {\mathrm{i}}+\left(\frac{\mathrm{k}}{\mathrm{2}}−\frac{\mathrm{h}}{\mathrm{2k}}\left(\mathrm{a}−\mathrm{h}\right)\right]\right. \\ $$$$\:=\left(\mathrm{h}−\frac{\mathrm{a}}{\mathrm{2}}\right)\hat {\mathrm{i}}+\left[\frac{\mathrm{3h}}{\mathrm{2k}}\left(\mathrm{a}−\mathrm{h}\right)−\frac{\mathrm{k}}{\mathrm{2}}\right]\hat {\mathrm{j}}\: \\ $$$$\:\:\overset{\rightarrow} {\mathrm{OA}}+\overset{\rightarrow} {\mathrm{OB}}+\overset{\rightarrow} {\mathrm{OC}}\:=\:\overset{\rightarrow} {\mathrm{OH}}\:\:\:\left[\mathrm{see}\:\left(\mathrm{i}\right)\right]. \\ $$$$\:\:\: \\ $$

Commented by ajfour last updated on 26/Jun/17

please do so.

$$\mathrm{please}\:\mathrm{do}\:\mathrm{so}. \\ $$

Answered by Tinkutara last updated on 26/Jun/17

Commented by Tinkutara last updated on 26/Jun/17

Since A′BHC is a parallelogram, so  HC^(→)  + HB^(→)  = HA′^(→)   and HA′^(→)  + HA^(→)  = 2HO^(→)   ⇒ HA^(→)  + HB^(→)  + HC^(→)  = 2HO^(→)   But then OA^(→)  + OB^(→)  + OC^(→)  =  OH^(→)  + HA^(→)  + OH^(→)  + HB^(→)  + OH^(→)  + HC^(→)   = 3OH^(→)  + 2HO^(→)  = OH^(→) ,  as desired.

$$\mathrm{Since}\:{A}'{BHC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{parallelogram},\:\mathrm{so} \\ $$$$\overset{\rightarrow} {{HC}}\:+\:\overset{\rightarrow} {{HB}}\:=\:\overset{\rightarrow} {{HA}'} \\ $$$$\mathrm{and}\:\overset{\rightarrow} {{HA}'}\:+\:\overset{\rightarrow} {{HA}}\:=\:\mathrm{2}\overset{\rightarrow} {{HO}} \\ $$$$\Rightarrow\:\overset{\rightarrow} {{HA}}\:+\:\overset{\rightarrow} {{HB}}\:+\:\overset{\rightarrow} {{HC}}\:=\:\mathrm{2}\overset{\rightarrow} {{HO}} \\ $$$$\mathrm{But}\:\mathrm{then}\:\overset{\rightarrow} {{OA}}\:+\:\overset{\rightarrow} {{OB}}\:+\:\overset{\rightarrow} {{OC}}\:= \\ $$$$\overset{\rightarrow} {{OH}}\:+\:\overset{\rightarrow} {{HA}}\:+\:\overset{\rightarrow} {{OH}}\:+\:\overset{\rightarrow} {{HB}}\:+\:\overset{\rightarrow} {{OH}}\:+\:\overset{\rightarrow} {{HC}} \\ $$$$=\:\mathrm{3}\overset{\rightarrow} {{OH}}\:+\:\mathrm{2}\overset{\rightarrow} {{HO}}\:=\:\overset{\rightarrow} {{OH}}, \\ $$$$\mathrm{as}\:\mathrm{desired}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com