Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 167624 by mnjuly1970 last updated on 21/Mar/22

    solve    Ω =lim_( n→∞) n^( 2) . ln( n . sin((1/n)))=?

$$ \\ $$$$\:\:{solve} \\ $$$$\:\:\Omega\:={lim}_{\:{n}\rightarrow\infty} {n}^{\:\mathrm{2}} .\:{ln}\left(\:{n}\:.\:{sin}\left(\frac{\mathrm{1}}{{n}}\right)\right)=? \\ $$$$ \\ $$

Answered by qaz last updated on 21/Mar/22

lim_(n→∞) n^2 ln(nsin (1/n))  =lim_(n→∞) n^2 ln(1−(1/(6n^2 ))+O((1/n^4 )))  =lim_(n→∞) n^2 ((−(1/(6n^2 ))+O((1/n^4 )))  =−(1/6)

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{nsin}\:\frac{\mathrm{1}}{\mathrm{n}}\right) \\ $$$$=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6n}^{\mathrm{2}} }+\mathcal{O}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{4}} }\right)\right) \\ $$$$=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}^{\mathrm{2}} \left(\left(−\frac{\mathrm{1}}{\mathrm{6n}^{\mathrm{2}} }+\mathcal{O}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{4}} }\right)\right)\right. \\ $$$$=−\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Commented by mnjuly1970 last updated on 22/Mar/22

✓

$$\checkmark \\ $$

Answered by LEKOUMA last updated on 21/Mar/22

lim_(n→∞) n^2 .nsin ((1/n))((ln (n.sin ((1/n))))/(n.sin ((1/n))))  lim_(n→∞) n^3 sin((1/n))  Poson,  t=(1/n) ⇒ n=(1/t)  si n ∞, t=0  lim_(t→0) (1/t^3 )sin t=lim_(t→0) ((sin t)/t^3 )  Hospital  lim_(t→0) (((sin t)′)/((t^3 ) ′))=lim_(t→0) ((cos t)/(3t^2 ))=lim_(t→0) (((cos t) ′)/((3t^2 )^′ ))  lim_(t→0) ((−sin t)/(6t))=−(1/6)lim_(t→0) ((sin t)/t)=−(1/6)  lim_(n→ ∞) ((ln (n.sin ((1/n))))/(n.sin ((1/n))))=0  lim_(n→∞) n^2 ln (n.sin((1/n)))=0

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}^{\mathrm{2}} .{n}\mathrm{sin}\:\left(\frac{\mathrm{1}}{{n}}\right)\frac{\mathrm{ln}\:\left({n}.\mathrm{sin}\:\left(\frac{\mathrm{1}}{{n}}\right)\right)}{{n}.\mathrm{sin}\:\left(\frac{\mathrm{1}}{{n}}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}^{\mathrm{3}} \mathrm{sin}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$${Poson},\:\:{t}=\frac{\mathrm{1}}{{n}}\:\Rightarrow\:{n}=\frac{\mathrm{1}}{{t}} \\ $$$${si}\:{n} \infty,\:{t}=\mathrm{0} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\mathrm{sin}\:{t}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{t}}{{t}^{\mathrm{3}} } \\ $$$${Hospital} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{sin}\:{t}\right)'}{\left({t}^{\mathrm{3}} \right)\:'}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:{t}}{\mathrm{3}{t}^{\mathrm{2}} }=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{cos}\:{t}\right)\:'}{\left(\mathrm{3}{t}^{\mathrm{2}} \right)^{'} } \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{sin}\:{t}}{\mathrm{6}{t}}=−\frac{\mathrm{1}}{\mathrm{6}}\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{t}}{{t}}=−\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\underset{{n}\rightarrow\:\infty} {\mathrm{lim}}\frac{\mathrm{ln}\:\left({n}.\mathrm{sin}\:\left(\frac{\mathrm{1}}{{n}}\right)\right)}{{n}.\mathrm{sin}\:\left(\frac{\mathrm{1}}{{n}}\right)}=\mathrm{0} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}^{\mathrm{2}} \mathrm{ln}\:\left({n}.\mathrm{sin}\left(\frac{\mathrm{1}}{{n}}\right)\right)=\mathrm{0}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com