Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 167644 by MJS_new last updated on 22/Mar/22

find the exact value of  ∫_0 ^(2π) (dx/( (√(1+sin x))+(√(1+cos x))))

findtheexactvalueof2π0dx1+sinx+1+cosx

Commented by cortano1 last updated on 23/Mar/22

i got3.962   it true?

igot3.962ittrue?

Commented by MJS_new last updated on 23/Mar/22

yes. but can you give the exact value?

yes.butcanyougivetheexactvalue?

Answered by greogoury55 last updated on 23/Mar/22

  ∫_0 ^( 2π) (dx/( (√(1+sin x)) +(√(1+cos x))))    = 2∫_0 ^( π) (dx/(∣sin (x/2)+cos (x/2)∣+(√2) ∣cos (x/2)∣))   = 2∫_0 ^( π)  (dt/(∣sin t+cos t∣+(√2) ∣cos t∣))   =∫_0 ^(π/2) ((2dt)/(sin t+(1+(√2))cos t)) + ∫_(π/2) ^((3π)/4) ((2dt)/(sin t+(1−(√2))cos t))   −∫_((3π)/4) ^π ((2dt)/(sin t+(1+(√2))cos t))   = [(4/((1+(√2))(√(4−2(√2))))) tanh^(−1) (((tan (x/4)−(√2)+1)/( (√(4−2(√2))))))]_0 ^(2π)

02πdx1+sinx+1+cosx=20πdxsinx2+cosx2+2cosx2=20πdtsint+cost+2cost=0π22dtsint+(1+2)cost+π23π42dtsint+(12)cost3π4π2dtsint+(1+2)cost=[4(1+2)422tanh1(tanx42+1422)]02π

Commented by MJS_new last updated on 23/Mar/22

I think this is wrong. I solved the integral at  question 167586. but for the area we are not  allowed to ignore the absolute values

Ithinkthisiswrong.Isolvedtheintegralatquestion167586.butfortheareawearenotallowedtoignoretheabsolutevalues

Commented by MJS_new last updated on 24/Mar/22

F(x)=(4/((1+(√2))(√(4−2(√2))))) tanh^(−1) (((tan (x/4)−(√2)+1)/( (√(4−2(√2))))))  F(x) is not defined for  x≥4arctan (−1+(√2)+(√(4−2(√2)))) ≈3.927<2π

F(x)=4(1+2)422tanh1(tanx42+1422)F(x)isnotdefinedforx4arctan(1+2+422)3.927<2π

Commented by greogoury55 last updated on 24/Mar/22

no sir. it my answer correct but different  way with your solution

nosir.itmyanswercorrectbutdifferentwaywithyoursolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com