All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 167666 by LEKOUMA last updated on 22/Mar/22
In=∫dxcosnxProvethatIn=n−2n−1In−2+sinx(n−1)cosn−1x
Commented by peter frank last updated on 22/Mar/22
Reductionformular
Answered by chhaythean last updated on 22/Mar/22
SolutionIn=∫dxcosnx=∫secnxdx=∫secn−2xsec2xdxlet{u=secn−2x⇒du=(n−2)secn−2xtanxdxdv=sec2xdx⇒v=tanxIn=secn−2xtanx−(n−2)∫secn−2xtan2xdx=secn−2xtanx−(n−2)∫secnxdx+(n−2)∫secn−2dxIn=secn−2xtanx−(n−2)In+(n−2)In−2In+(n−2)In=secn−2xtanx+(n−2)In−2(n−1)In=secn−2xtanx+(n−2)In−2In=1cosn−2x×sinxcosxn−1+n−2n−1In−2In=n−2n−1In−2+sinxcosn−1x(n−1)trueSoIn=n−2n−1In−2+sinx(n−1)cosn−1xisproved.
Commented by LEKOUMA last updated on 22/Mar/22
Thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com