Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 167725 by Rasheed.Sindhi last updated on 23/Mar/22

Q#167612 reposted.  Determine all the possible triples  (a,b,c) of positive integers for which  ab−c,bc−a and ca−b are powers of  2.

$${Q}#\mathrm{167612}\:{reposted}. \\ $$$$\mathcal{D}{etermine}\:{all}\:{the}\:{possible}\:{triples} \\ $$$$\left({a},{b},{c}\right)\:{of}\:{positive}\:{integers}\:{for}\:{which} \\ $$$${ab}−{c},{bc}−{a}\:{and}\:{ca}−{b}\:{are}\:{powers}\:{of} \\ $$$$\mathrm{2}. \\ $$

Commented by Tinku Tara last updated on 24/Mar/22

a=b=c=2

$${a}={b}={c}=\mathrm{2} \\ $$

Commented by Tinku Tara last updated on 24/Mar/22

if a^2 −1 is odd then 2^x +2^y a need not be  odd. It could be 2(a^2 −1)k

$$\mathrm{if}\:{a}^{\mathrm{2}} −\mathrm{1}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{then}\:\mathrm{2}^{{x}} +\mathrm{2}^{{y}} {a}\:\mathrm{need}\:\mathrm{not}\:\mathrm{be} \\ $$$$\mathrm{odd}.\:\mathrm{It}\:\mathrm{could}\:\mathrm{be}\:\mathrm{2}\left({a}^{\mathrm{2}} −\mathrm{1}\right){k} \\ $$

Commented by Tinku Tara last updated on 24/Mar/22

subtract (1) from (2)  ab−c=2^α   ac−b=2^β   a(b−c)−(b−c)=2^a (2^b −1)  (b−c)(a−1)=2^a (2^b −1)

$$\mathrm{subtract}\:\left(\mathrm{1}\right)\:\mathrm{from}\:\left(\mathrm{2}\right) \\ $$$${ab}−{c}=\mathrm{2}^{\alpha} \\ $$$${ac}−{b}=\mathrm{2}^{\beta} \\ $$$${a}\left({b}−{c}\right)−\left({b}−{c}\right)=\mathrm{2}^{{a}} \left(\mathrm{2}^{{b}} −\mathrm{1}\right) \\ $$$$\left({b}−{c}\right)\left({a}−\mathrm{1}\right)=\mathrm{2}^{{a}} \left(\mathrm{2}^{{b}} −\mathrm{1}\right) \\ $$

Commented by Rasheed.Sindhi last updated on 24/Mar/22

There′s no c on the right side.  That means it has no effect on the  result?

$$\mathcal{T}{here}'{s}\:{no}\:{c}\:{on}\:{the}\:{right}\:{side}. \\ $$$$\mathcal{T}{hat}\:{means}\:{it}\:{has}\:{no}\:{effect}\:{on}\:{the} \\ $$$${result}? \\ $$

Answered by Rasheed.Sindhi last updated on 24/Mar/22

A Try...  (e represents even and o represents odd here)  Case0:No one of a,b,c is odd.  Let a,b,c are denoted as e_a ,e_b ,e_c   respectively.  ab−c=e_a e_b −e_c =2^l                     e−e=e                      e=e  bc−a=e_b e_c −e_a =2^m                   e−e=e                      e=e  ca−b=e_c e_a −e_b =2^n                      e−e=e                      e=e  No contradiction!  Case1:Only one of a,b,c is odd.  Let a,b,c are denoted as o_a ,e_b ,e_c   respectively.  ab−c=o_a e_b −e_c =2^l   bc−a=e_b e_c −o_a =2^m               e−o=e               o=e  Contrdiction!  ca−b=e_c o_a −e_b =2^n   Case2:Only two of a,b,c are odd.  Let a,b,c are denoted as o_a ,o_b ,e_c   respectively.  ab−c=o_a o_b −e_c =2^l                   o−e=e                  o=e  Contrdiction!  Case3:All of a,b,c are odd.  Let a,b,c are denoted as o_a ,o_b ,o_c   respectively.  ab−c=o_a o_b −o_c =2^l                   o−o=e                       e=e  bc−a=o_b o_c −o_a =2^m                   o−o=e                       e=e  ca−b=o_c o_a −o_b =2^l                   o−o=e                       e=e  No contradiction!    ∴ Either all the three are odd or  even.   determinant (( determinant (((a,b,c ∈ E)))_ determinant (((or)))_(   determinant (((a,b,c ∈_ ^  O))))  ))

$$\mathcal{A}\:\mathcal{T}{ry}... \\ $$$$\left({e}\:{represents}\:{even}\:{and}\:{o}\:{represents}\:{odd}\:{here}\right) \\ $$$${Case}\mathrm{0}:{No}\:{one}\:{of}\:{a},{b},{c}\:{is}\:{odd}. \\ $$$${Let}\:{a},{b},{c}\:{are}\:{denoted}\:{as}\:{e}_{{a}} ,{e}_{{b}} ,{e}_{{c}} \\ $$$${respectively}. \\ $$$${ab}−{c}={e}_{{a}} {e}_{{b}} −{e}_{{c}} =\mathrm{2}^{{l}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}−{e}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$${bc}−{a}={e}_{{b}} {e}_{{c}} −{e}_{{a}} =\mathrm{2}^{{m}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}−{e}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$${ca}−{b}={e}_{{c}} {e}_{{a}} −{e}_{{b}} =\mathrm{2}^{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}−{e}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$$\mathcal{N}{o}\:{contradiction}! \\ $$$${Case}\mathrm{1}:{Only}\:{one}\:{of}\:{a},{b},{c}\:{is}\:{odd}. \\ $$$${Let}\:{a},{b},{c}\:{are}\:{denoted}\:{as}\:{o}_{{a}} ,{e}_{{b}} ,{e}_{{c}} \\ $$$${respectively}. \\ $$$${ab}−{c}={o}_{{a}} {e}_{{b}} −{e}_{{c}} =\mathrm{2}^{{l}} \\ $$$${bc}−{a}={e}_{{b}} {e}_{{c}} −{o}_{{a}} =\mathrm{2}^{{m}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{e}−{o}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{o}={e} \\ $$$${Contrdiction}! \\ $$$${ca}−{b}={e}_{{c}} {o}_{{a}} −{e}_{{b}} =\mathrm{2}^{{n}} \\ $$$${Case}\mathrm{2}:{Only}\:{two}\:{of}\:{a},{b},{c}\:{are}\:{odd}. \\ $$$${Let}\:{a},{b},{c}\:{are}\:{denoted}\:{as}\:{o}_{{a}} ,{o}_{{b}} ,{e}_{{c}} \\ $$$${respectively}. \\ $$$${ab}−{c}={o}_{{a}} {o}_{{b}} −{e}_{{c}} =\mathrm{2}^{{l}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}−{e}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}={e} \\ $$$${Contrdiction}! \\ $$$${Case}\mathrm{3}:{All}\:{of}\:{a},{b},{c}\:{are}\:{odd}. \\ $$$${Let}\:{a},{b},{c}\:{are}\:{denoted}\:{as}\:{o}_{{a}} ,{o}_{{b}} ,{o}_{{c}} \\ $$$${respectively}. \\ $$$${ab}−{c}={o}_{{a}} {o}_{{b}} −{o}_{{c}} =\mathrm{2}^{{l}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}−{o}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$${bc}−{a}={o}_{{b}} {o}_{{c}} −{o}_{{a}} =\mathrm{2}^{{m}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}−{o}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$${ca}−{b}={o}_{{c}} {o}_{{a}} −{o}_{{b}} =\mathrm{2}^{{l}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}−{o}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$$\mathcal{N}{o}\:{contradiction}! \\ $$$$ \\ $$$$\therefore\:\mathcal{E}{ither}\:{all}\:{the}\:{three}\:{are}\:{odd}\:{or} \\ $$$${even}. \\ $$$$\begin{array}{|c|}{\begin{array}{|c|}{{a},{b},{c}\:\in\:\mathbb{E}}\\\hline\end{array}_{\begin{array}{|c|}{\mathrm{or}}\\\hline\end{array}_{\:\:\begin{array}{|c|}{{a},{b},{c}\:\in_{} ^{} \:\mathbb{O}}\\\hline\end{array}} } }\\\hline\end{array} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com