Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 167820 by MWSuSon last updated on 26/Mar/22

given  x^2 =(π^2 /3)+4Σ(−1)^n ((cos(nx))/n^2 ), show that Σ(1/((2n−1)^2 ))=(π^2 /8)

givenx2=π23+4Σ(1)ncos(nx)n2,showthatΣ1(2n1)2=π28

Answered by Mathspace last updated on 26/Mar/22

x^2 =(π^2 /3)+4Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(nx)  x=(π/2) ⇒(π^2 /4)=(π^2 /3)+4Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(((nπ)/2))  n=2m⇒cos(n(π/2))=(−1)^m   n=2m+1 ⇒cos(((nπ)/2))=0 ⇒  4Σ_(m=1) ^∞ (((−1)^(2m) (−1)^m )/(4m^2 ))=(π^2 /4)−(π^2 /3)  =−(π^2 /(12)) ⇒Σ_(m=1) ^∞ (((−1)^m )/m^2 )=−(π^2 /(12)) ⇒  (1/4)Σ_(n=1) ^∞ (1/n^2 )−Σ_(n=0) ^∞ (1/((2n+1)^2 ))=−(π^2 /(12))  ⇒Σ_(n=0) ^∞  (1/((2n+1)^2 ))=(1/4)(π^2 /6)+(π^2 /(12))  =((π^2 +2π^2 )/(24))=((3π^2 )/(24))=(π^2 /8)  n=r−1⇒Σ_(r=1) ^∞  (1/((2r−1)^2 ))=(π^2 /8)

x2=π23+4n=1(1)nn2cos(nx)x=π2π24=π23+4n=1(1)nn2cos(nπ2)n=2mcos(nπ2)=(1)mn=2m+1cos(nπ2)=04m=1(1)2m(1)m4m2=π24π23=π212m=1(1)mm2=π21214n=11n2n=01(2n+1)2=π212n=01(2n+1)2=14π26+π212=π2+2π224=3π224=π28n=r1r=11(2r1)2=π28

Terms of Service

Privacy Policy

Contact: info@tinkutara.com