All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 167820 by MWSuSon last updated on 26/Mar/22
givenx2=π23+4Σ(−1)ncos(nx)n2,showthatΣ1(2n−1)2=π28
Answered by Mathspace last updated on 26/Mar/22
x2=π23+4∑n=1∞(−1)nn2cos(nx)x=π2⇒π24=π23+4∑n=1∞(−1)nn2cos(nπ2)n=2m⇒cos(nπ2)=(−1)mn=2m+1⇒cos(nπ2)=0⇒4∑m=1∞(−1)2m(−1)m4m2=π24−π23=−π212⇒∑m=1∞(−1)mm2=−π212⇒14∑n=1∞1n2−∑n=0∞1(2n+1)2=−π212⇒∑n=0∞1(2n+1)2=14π26+π212=π2+2π224=3π224=π28n=r−1⇒∑r=1∞1(2r−1)2=π28
Terms of Service
Privacy Policy
Contact: info@tinkutara.com