All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 167823 by cortano1 last updated on 26/Mar/22
Commented by dangduomg last updated on 26/Mar/22
actuallyverylonganswer
Commented by MJS_new last updated on 26/Mar/22
afirststeps∫ln(1+x2−13)xx2−13dx=[t=1+x2−13→dx=x2−13xdt]=∫lntt2−2t+43dt==∫lnt(t−1−33i)(t−1+33i)dt=...thiscanbesolvedbutittakessometime...lnt(t−a)(t−b)=lnt(a−b)(t−a)+lnt(b−a)(t−b)...
Answered by Mathspace last updated on 27/Mar/22
f(a)=∫ln(1+ax2−13)xx2−13dx⇒f′(a)=∫1x(1+ax2−13)dx=x=13cht∫13.13cht(1+a13sht)shtdt=3∫shtcht(3+asht)dt=3∫et−e−t2et+e−t2(3+aet−e−t2)dt=23∫et−e−t(et+e−t)(23+aet−ae−t)dt=et=z∫z−z−1(z+z−1)(23+az−az−1)dzz=∫z(z−z−1)z(z+z−1)z(23+az−az−1)dz=∫z2−1(z2+1)(23z+az2−a)dzwedecomposeF(z)=z2−1(z2+1)(az2+23z−a)rootsofaz2+23z−aΔ′=3+a2⇒z1=−3+a2+3az2=−3−a2+3aF(z)=αz+βz2+1+c1z−z1+c2z−z2....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com