Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 16789 by ajfour last updated on 26/Jun/17

Commented by ajfour last updated on 26/Jun/17

 solution to Q.16065  find locus of M such that   Area(△MAB)=2Area(△MCD).

$$\:\mathrm{solution}\:\mathrm{to}\:\mathrm{Q}.\mathrm{16065} \\ $$$$\mathrm{find}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{M}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{Area}\left(\bigtriangleup\mathrm{MAB}\right)=\mathrm{2Area}\left(\bigtriangleup\mathrm{MCD}\right). \\ $$

Answered by ajfour last updated on 26/Jun/17

 Area(△MAB)=(1/2)(ay)   Area(△MCD)=(1/2) determinant ((x,y,1),(b,c,1),(d,e,1))  2×Area(△MCD)=Area(△MAB)    determinant ((x,y,1),(b,c,1),(d,e,1))=((ay)/2)  so a straight line.

$$\:\mathrm{Area}\left(\bigtriangleup\mathrm{MAB}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{ay}\right) \\ $$$$\:\mathrm{Area}\left(\bigtriangleup\mathrm{MCD}\right)=\frac{\mathrm{1}}{\mathrm{2}}\begin{vmatrix}{\mathrm{x}}&{\mathrm{y}}&{\mathrm{1}}\\{\mathrm{b}}&{\mathrm{c}}&{\mathrm{1}}\\{\mathrm{d}}&{\mathrm{e}}&{\mathrm{1}}\end{vmatrix} \\ $$$$\mathrm{2}×\mathrm{Area}\left(\bigtriangleup\mathrm{MCD}\right)=\mathrm{Area}\left(\bigtriangleup\mathrm{MAB}\right) \\ $$$$\:\begin{vmatrix}{\mathrm{x}}&{\mathrm{y}}&{\mathrm{1}}\\{\mathrm{b}}&{\mathrm{c}}&{\mathrm{1}}\\{\mathrm{d}}&{\mathrm{e}}&{\mathrm{1}}\end{vmatrix}=\frac{\mathrm{ay}}{\mathrm{2}} \\ $$$$\mathrm{so}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}. \\ $$

Commented by Tinkutara last updated on 26/Jun/17

Yes Sir the answer is a straight line but  here it is required to draw that line/or  identify it. I am giving the figure in  which it is located. There is some  theory part of the solution but it is  not clear to me. Please explain.

$$\mathrm{Yes}\:\mathrm{Sir}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{but} \\ $$$$\mathrm{here}\:\mathrm{it}\:\mathrm{is}\:\mathrm{required}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{that}\:\mathrm{line}/\mathrm{or} \\ $$$$\mathrm{identify}\:\mathrm{it}.\:\mathrm{I}\:\mathrm{am}\:\mathrm{giving}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{in} \\ $$$$\mathrm{which}\:\mathrm{it}\:\mathrm{is}\:\mathrm{located}.\:\mathrm{There}\:\mathrm{is}\:\mathrm{some} \\ $$$$\mathrm{theory}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{but}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{not}\:\mathrm{clear}\:\mathrm{to}\:\mathrm{me}.\:\mathrm{Please}\:\mathrm{explain}. \\ $$

Commented by Tinkutara last updated on 26/Jun/17

Commented by Tinkutara last updated on 26/Jun/17

Here it is given that JK is the  required locus of points M. Solution is  given below.

$$\mathrm{Here}\:\mathrm{it}\:\mathrm{is}\:\mathrm{given}\:\mathrm{that}\:{JK}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{required}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{points}\:{M}.\:\mathrm{Solution}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{below}. \\ $$

Commented by Tinkutara last updated on 26/Jun/17

Commented by ajfour last updated on 26/Jun/17

pretty lengthy, cannot comprehend  right now.

$$\mathrm{pretty}\:\mathrm{lengthy},\:\mathrm{cannot}\:\mathrm{comprehend} \\ $$$$\mathrm{right}\:\mathrm{now}. \\ $$

Answered by mrW1 last updated on 26/Jun/17

Let AB=a and CD=b    Case 1: AB//CD  A_(ΔABM) =(1/2)AB×h_1 =(1/2)ah_1   A_(ΔCDM) =(1/2)CD×h_2 =(1/2)bh_2     A_(ΔABM) =2A_(ΔCDM)   ⇒ah_1 =2bh_2   (h_1 /h_2 )=((2b)/a)  h_1 +h_2 =h  ⇒h_1 =((2b)/(a+2b))h=constant  ⇒h_2 =(a/(a+2b))h=constant  ⇒M lies on a straight line // to AB  and CD

$$\mathrm{Let}\:\mathrm{AB}=\mathrm{a}\:\mathrm{and}\:\mathrm{CD}=\mathrm{b} \\ $$$$ \\ $$$$\mathrm{Case}\:\mathrm{1}:\:\mathrm{AB}//\mathrm{CD} \\ $$$$\mathrm{A}_{\Delta\mathrm{ABM}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{AB}×\mathrm{h}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ah}_{\mathrm{1}} \\ $$$$\mathrm{A}_{\Delta\mathrm{CDM}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{CD}×\mathrm{h}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{bh}_{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{A}_{\Delta\mathrm{ABM}} =\mathrm{2A}_{\Delta\mathrm{CDM}} \\ $$$$\Rightarrow\mathrm{ah}_{\mathrm{1}} =\mathrm{2bh}_{\mathrm{2}} \\ $$$$\frac{\mathrm{h}_{\mathrm{1}} }{\mathrm{h}_{\mathrm{2}} }=\frac{\mathrm{2b}}{\mathrm{a}} \\ $$$$\mathrm{h}_{\mathrm{1}} +\mathrm{h}_{\mathrm{2}} =\mathrm{h} \\ $$$$\Rightarrow\mathrm{h}_{\mathrm{1}} =\frac{\mathrm{2b}}{\mathrm{a}+\mathrm{2b}}\mathrm{h}=\mathrm{constant} \\ $$$$\Rightarrow\mathrm{h}_{\mathrm{2}} =\frac{\mathrm{a}}{\mathrm{a}+\mathrm{2b}}\mathrm{h}=\mathrm{constant} \\ $$$$\Rightarrow\mathrm{M}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\://\:\mathrm{to}\:\mathrm{AB} \\ $$$$\mathrm{and}\:\mathrm{CD} \\ $$

Commented by mrW1 last updated on 26/Jun/17

Commented by mrW1 last updated on 27/Jun/17

Case 2:  AB and CD meets at point O, and  ∠AOD=α≠0    let OM=d  ∠AOM=β  h_1 =d sin β  h_2 =d sin (α−β)    A_(ΔABM) =(1/2)ah_1   A_(ΔCDM) =(1/2)bh_2   A_(ΔABM) =2A_(ΔCDM)   ⇒ah_1 =2bh_2   ⇒ad sin β=2bd sin (α−β)  ⇒a sin β=2b sin (α−β)  ⇒(a/(2b)) sin β=sin (α−β)  with μ=(a/(2b))  ⇒μ sin β=sin α cos β+cos α sin β  ⇒(μ−cos α) sin β=sin α cos β  ⇒tan β=((sin α)/(μ−cos α))  ⇒β=tan^(−1) (((sin α)/(μ−cos α)))=constant    ⇒M lies on a straight line which  passes the point O.

$$\mathrm{Case}\:\mathrm{2}: \\ $$$$\mathrm{AB}\:\mathrm{and}\:\mathrm{CD}\:\mathrm{meets}\:\mathrm{at}\:\mathrm{point}\:\mathrm{O},\:\mathrm{and} \\ $$$$\angle\mathrm{AOD}=\alpha\neq\mathrm{0} \\ $$$$ \\ $$$$\mathrm{let}\:\mathrm{OM}=\mathrm{d} \\ $$$$\angle\mathrm{AOM}=\beta \\ $$$$\mathrm{h}_{\mathrm{1}} =\mathrm{d}\:\mathrm{sin}\:\beta \\ $$$$\mathrm{h}_{\mathrm{2}} =\mathrm{d}\:\mathrm{sin}\:\left(\alpha−\beta\right) \\ $$$$ \\ $$$$\mathrm{A}_{\Delta\mathrm{ABM}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ah}_{\mathrm{1}} \\ $$$$\mathrm{A}_{\Delta\mathrm{CDM}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{bh}_{\mathrm{2}} \\ $$$$\mathrm{A}_{\Delta\mathrm{ABM}} =\mathrm{2A}_{\Delta\mathrm{CDM}} \\ $$$$\Rightarrow\mathrm{ah}_{\mathrm{1}} =\mathrm{2bh}_{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{ad}\:\mathrm{sin}\:\beta=\mathrm{2bd}\:\mathrm{sin}\:\left(\alpha−\beta\right) \\ $$$$\Rightarrow\mathrm{a}\:\mathrm{sin}\:\beta=\mathrm{2b}\:\mathrm{sin}\:\left(\alpha−\beta\right) \\ $$$$\Rightarrow\frac{\mathrm{a}}{\mathrm{2b}}\:\mathrm{sin}\:\beta=\mathrm{sin}\:\left(\alpha−\beta\right) \\ $$$$\mathrm{with}\:\mu=\frac{\mathrm{a}}{\mathrm{2b}} \\ $$$$\Rightarrow\mu\:\mathrm{sin}\:\beta=\mathrm{sin}\:\alpha\:\mathrm{cos}\:\beta+\mathrm{cos}\:\alpha\:\mathrm{sin}\:\beta \\ $$$$\Rightarrow\left(\mu−\mathrm{cos}\:\alpha\right)\:\mathrm{sin}\:\beta=\mathrm{sin}\:\alpha\:\mathrm{cos}\:\beta \\ $$$$\Rightarrow\mathrm{tan}\:\beta=\frac{\mathrm{sin}\:\alpha}{\mu−\mathrm{cos}\:\alpha} \\ $$$$\Rightarrow\beta=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{sin}\:\alpha}{\mu−\mathrm{cos}\:\alpha}\right)=\mathrm{constant} \\ $$$$ \\ $$$$\Rightarrow\mathrm{M}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{which} \\ $$$$\mathrm{passes}\:\mathrm{the}\:\mathrm{point}\:\mathrm{O}. \\ $$

Commented by mrW1 last updated on 26/Jun/17

Commented by mrW1 last updated on 28/Jun/17

This method is valid generally for  A_(ΔABM) =nA_(ΔCDM)   we just need to make D′E′/E′A′=1/n

$$\mathrm{This}\:\mathrm{method}\:\mathrm{is}\:\mathrm{valid}\:\mathrm{generally}\:\mathrm{for} \\ $$$$\mathrm{A}_{\Delta\mathrm{ABM}} =\mathrm{nA}_{\Delta\mathrm{CDM}} \\ $$$$\mathrm{we}\:\mathrm{just}\:\mathrm{need}\:\mathrm{to}\:\mathrm{make}\:\mathrm{D}'\mathrm{E}'/\mathrm{E}'\mathrm{A}'=\mathrm{1}/\mathrm{n} \\ $$

Commented by mrW1 last updated on 26/Jun/17

This is how to draw the line:    Make OA′=AB=a  Make OD′=CD=b  Make D′E′=(1/3)A′D′  i.e. A′E′=2D′E′  ⇒A_(ΔOA′E′) =2A_(ΔOD′E′)     Connecting OE′ we get a line which  intersects with AD at E and with BC  at F. EF is the line for point M.

$$\mathrm{This}\:\mathrm{is}\:\mathrm{how}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{the}\:\mathrm{line}: \\ $$$$ \\ $$$$\mathrm{Make}\:\mathrm{OA}'=\mathrm{AB}=\mathrm{a} \\ $$$$\mathrm{Make}\:\mathrm{OD}'=\mathrm{CD}=\mathrm{b} \\ $$$$\mathrm{Make}\:\mathrm{D}'\mathrm{E}'=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{A}'\mathrm{D}' \\ $$$$\mathrm{i}.\mathrm{e}.\:\mathrm{A}'\mathrm{E}'=\mathrm{2D}'\mathrm{E}' \\ $$$$\Rightarrow\mathrm{A}_{\Delta\mathrm{OA}'\mathrm{E}'} =\mathrm{2A}_{\Delta\mathrm{OD}'\mathrm{E}'} \\ $$$$ \\ $$$$\mathrm{Connecting}\:\mathrm{OE}'\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:\mathrm{line}\:\mathrm{which} \\ $$$$\mathrm{intersects}\:\mathrm{with}\:\mathrm{AD}\:\mathrm{at}\:\mathrm{E}\:\mathrm{and}\:\mathrm{with}\:\mathrm{BC} \\ $$$$\mathrm{at}\:\mathrm{F}.\:\mathrm{EF}\:\mathrm{is}\:\mathrm{the}\:\mathrm{line}\:\mathrm{for}\:\mathrm{point}\:\mathrm{M}. \\ $$

Commented by mrW1 last updated on 26/Jun/17

Commented by mrW1 last updated on 27/Jun/17

As we can see in my calculation above  the line with angle β for the condition  A_(ΔABM) =2A_(ΔCDM)  is independent from  the position of points A and D, but  only dependent from a, b and α.  Therefore we can move the point A  and D to the point O, and the line for  locus of point M (expressed by β)  is the same.  And in this special situation the line  for locus of point M can be easily  determined through point E′.

$$\mathrm{As}\:\mathrm{we}\:\mathrm{can}\:\mathrm{see}\:\mathrm{in}\:\mathrm{my}\:\mathrm{calculation}\:\mathrm{above} \\ $$$$\mathrm{the}\:\mathrm{line}\:\mathrm{with}\:\mathrm{angle}\:\beta\:\mathrm{for}\:\mathrm{the}\:\mathrm{condition} \\ $$$$\mathrm{A}_{\Delta\mathrm{ABM}} =\mathrm{2A}_{\Delta\mathrm{CDM}} \:\mathrm{is}\:\mathrm{independent}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{position}\:\mathrm{of}\:\mathrm{points}\:\mathrm{A}\:\mathrm{and}\:\mathrm{D},\:\mathrm{but} \\ $$$$\mathrm{only}\:\mathrm{dependent}\:\mathrm{from}\:\mathrm{a},\:\mathrm{b}\:\mathrm{and}\:\alpha. \\ $$$$\mathrm{Therefore}\:\mathrm{we}\:\mathrm{can}\:\mathrm{move}\:\mathrm{the}\:\mathrm{point}\:\mathrm{A} \\ $$$$\mathrm{and}\:\mathrm{D}\:\mathrm{to}\:\mathrm{the}\:\mathrm{point}\:\mathrm{O},\:\mathrm{and}\:\mathrm{the}\:\mathrm{line}\:\mathrm{for} \\ $$$$\mathrm{locus}\:\mathrm{of}\:\mathrm{point}\:\mathrm{M}\:\left(\mathrm{expressed}\:\mathrm{by}\:\beta\right) \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{same}. \\ $$$$\mathrm{And}\:\mathrm{in}\:\mathrm{this}\:\mathrm{special}\:\mathrm{situation}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{for}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{point}\:\mathrm{M}\:\mathrm{can}\:\mathrm{be}\:\mathrm{easily} \\ $$$$\mathrm{determined}\:\mathrm{through}\:\mathrm{point}\:\mathrm{E}'. \\ $$

Commented by mrW1 last updated on 28/Jun/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com