Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 167898 by peter frank last updated on 28/Mar/22

Answered by som(math1967) last updated on 29/Mar/22

 y=mx    x^2 +y^2 −2ax=0  or  x^2 +m^2 x^2 −2ax=0  [ ∵y=mx]  or x(x+m^2 x−2a)=0  ∴ x=0,  x=((2a)/(m^2 +1))  ⇒y=0 , y=((2am)/(m^2 +1))  ∴ end points of the chord    (0,0) (((2a)/(m^2 +1)) ,((2am)/(m^2 +1)))  mid point of the chord   ((a/(m^2 +1)) , ((am)/(m^2 +1))) i.e centre of the circle  which this chord is diameter   (1/2)length of chord =radd of the circle   =(√((a^2 /((m^2 +1)^2 ))+((a^2 m^2 )/((m^2 +1)^2 ))))  =(a/( (√(m^2 +1))))  equation of the circle  (x−(a/(m^2 +1)))^2 +(y−((am)/(m^2 +1)))^2 =(a^2 /(m^2 +1))   or x^2 +y^2   −((2ax)/(m^2 +1))−((2ay)/(m^2 +1)) +((a^2 (1+m^2 ))/((1+m^2 )^2 ))        =(a^2 /(m^2 +1))  or (1+m^2 )(x^2 +y^2 )−2a(x+my)+a^2 =a^2   (1+m^2 )(x^2 +y^2 ) −2a(x+my)=0                                [proved]

$$\:{y}={mx}\:\: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}=\mathrm{0} \\ $$$${or}\:\:{x}^{\mathrm{2}} +{m}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{ax}=\mathrm{0}\:\:\left[\:\because{y}={mx}\right] \\ $$$${or}\:{x}\left({x}+{m}^{\mathrm{2}} {x}−\mathrm{2}{a}\right)=\mathrm{0} \\ $$$$\therefore\:{x}=\mathrm{0},\:\:{x}=\frac{\mathrm{2}{a}}{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Rightarrow{y}=\mathrm{0}\:,\:{y}=\frac{\mathrm{2}{am}}{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\therefore\:{end}\:{points}\:{of}\:{the}\:{chord} \\ $$$$\:\:\left(\mathrm{0},\mathrm{0}\right)\:\left(\frac{\mathrm{2}{a}}{{m}^{\mathrm{2}} +\mathrm{1}}\:,\frac{\mathrm{2}{am}}{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${mid}\:{point}\:{of}\:{the}\:{chord}\: \\ $$$$\left(\frac{{a}}{{m}^{\mathrm{2}} +\mathrm{1}}\:,\:\frac{{am}}{{m}^{\mathrm{2}} +\mathrm{1}}\right)\:{i}.{e}\:{centre}\:{of}\:{the}\:{circle} \\ $$$${which}\:{this}\:{chord}\:{is}\:{diameter} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}}{length}\:{of}\:{chord}\:={radd}\:{of}\:{the}\:{circle} \\ $$$$\:=\sqrt{\frac{{a}^{\mathrm{2}} }{\left({m}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} {m}^{\mathrm{2}} }{\left({m}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$=\frac{{a}}{\:\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}} \\ $$$${equation}\:{of}\:{the}\:{circle} \\ $$$$\left({x}−\frac{{a}}{{m}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} +\left({y}−\frac{{am}}{{m}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:{or}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:\:−\frac{\mathrm{2}{ax}}{{m}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{2}{ay}}{{m}^{\mathrm{2}} +\mathrm{1}}\:+\frac{{a}^{\mathrm{2}} \left(\mathrm{1}+{m}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:=\frac{{a}^{\mathrm{2}} }{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$${or}\:\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)−\mathrm{2}{a}\left({x}+{my}\right)+{a}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\:−\mathrm{2}{a}\left({x}+{my}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{proved}\right] \\ $$

Commented by peter frank last updated on 29/Mar/22

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by mr W last updated on 29/Mar/22

x^2 +y^2 −2ax+2λ(mx−y)=0, say  (x−a+λm)^2 +(y−λ)^2 =(a−λm)^2 +λ^2   center (a−λm, λ) lies on line y=mx,  λ=m(a−λm) ⇒λ=((ma)/(1+m^2 ))  x^2 +y^2 −2ax+((2ma)/(1+m^2 ))(mx−y)=0  (1+m^2 )(x^2 +y^2 )−2a(x+my)=0 ✓

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}+\mathrm{2}\lambda\left({mx}−{y}\right)=\mathrm{0},\:{say} \\ $$$$\left({x}−{a}+\lambda{m}\right)^{\mathrm{2}} +\left({y}−\lambda\right)^{\mathrm{2}} =\left({a}−\lambda{m}\right)^{\mathrm{2}} +\lambda^{\mathrm{2}} \\ $$$${center}\:\left({a}−\lambda{m},\:\lambda\right)\:{lies}\:{on}\:{line}\:{y}={mx}, \\ $$$$\lambda={m}\left({a}−\lambda{m}\right)\:\Rightarrow\lambda=\frac{{ma}}{\mathrm{1}+{m}^{\mathrm{2}} } \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}+\frac{\mathrm{2}{ma}}{\mathrm{1}+{m}^{\mathrm{2}} }\left({mx}−{y}\right)=\mathrm{0} \\ $$$$\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)−\mathrm{2}{a}\left({x}+{my}\right)=\mathrm{0}\:\checkmark \\ $$

Commented by peter frank last updated on 29/Mar/22

more explanation.First line

$$\mathrm{more}\:\mathrm{explanation}.\mathrm{First}\:\mathrm{line} \\ $$

Commented by mr W last updated on 29/Mar/22

say the eqn. of a given circle is   G(x,y)=0, the eqn. of a given line is  H(x,y)=0    the eqn. of a circle which passes the  intersection points of circle G(x,y)=0  and line H(x,y)=0 is clearly  αG(x,y)+βH(x,y)=0 or  G(x,y)+λH(x,y)=0

$${say}\:{the}\:{eqn}.\:{of}\:{a}\:{given}\:{circle}\:{is}\: \\ $$$${G}\left({x},{y}\right)=\mathrm{0},\:{the}\:{eqn}.\:{of}\:{a}\:{given}\:{line}\:{is} \\ $$$${H}\left({x},{y}\right)=\mathrm{0} \\ $$$$ \\ $$$${the}\:{eqn}.\:{of}\:{a}\:{circle}\:{which}\:{passes}\:{the} \\ $$$${intersection}\:{points}\:{of}\:{circle}\:{G}\left({x},{y}\right)=\mathrm{0} \\ $$$${and}\:{line}\:{H}\left({x},{y}\right)=\mathrm{0}\:{is}\:{clearly} \\ $$$$\alpha{G}\left({x},{y}\right)+\beta{H}\left({x},{y}\right)=\mathrm{0}\:{or} \\ $$$${G}\left({x},{y}\right)+\lambda{H}\left({x},{y}\right)=\mathrm{0}\: \\ $$

Commented by peter frank last updated on 29/Mar/22

thanks

$$\mathrm{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com