Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 167916 by bounhome last updated on 29/Mar/22

give: z=cos(((2π)/(2015)))+isin(((2π)/(2015)))  find S=1+z+z^2 +z^3 +...+z^(2014)

give:z=cos(2π2015)+isin(2π2015)findS=1+z+z2+z3+...+z2014

Commented by benhamimed last updated on 29/Mar/22

z=e^(i((2π)/(2015)))   S=((e^(i((2π)/(2015))×2015) −1)/(e^(i((2π)/(2015))) −1))=((e^(i2π) −1)/(e^(i((2π)/(2015))) −1))=0

z=ei2π2015S=ei2π2015×20151ei2π20151=ei2π1ei2π20151=0

Answered by dangduomg last updated on 29/Mar/22

S=1+z+z^2 +z^3 +...+z^(2014)   = ((1 − z^(2015) )/(1 − z))  = ((1 − (cos(((2π)/(2015))) + i sin(((2π)/(2015))))^(2015) )/(1 − (cos(((2π)/(2015))) + i sin(((2π)/(2015))))))  = ((1 − cos(2π) − i sin(2π))/(1 − e^(i((2π)/(2015))) ))  = ((1 − 1)/(1 − e^(2πi/2015) ))  = 0

S=1+z+z2+z3+...+z2014=1z20151z=1(cos(2π2015)+isin(2π2015))20151(cos(2π2015)+isin(2π2015))=1cos(2π)isin(2π)1ei2π2015=111e2πi/2015=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com