Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 16794 by tawa tawa last updated on 26/Jun/17

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/Jun/17

c−x=t^3 ,x−a=s^3 ⇒x=((s^3 −t^3 )/2)+((a+c)/2)  a+c=c−2+c=2(c−1)=2b,c−a=2  ((c−x))^(1/3) −((a−x))^(1/3) =(c−x−x+a)((((c−x)^2 ))^(1/3) +(((c−x)(x−a)))^(1/3) +(((a−x)^2 ))^(1/3) )  ⇒(((t−s)(t^2 −ts+s^2 ))/(c+a))=b−x  ⇒t^3 −t^2 s+ts^2 −st^2 +ts^2 −s^3 =(a+c)(b−x)  t^3 −s^3 −2st^2 +2ts^2 =2(b)(((t^3 −s^3 )/2))  t^3 −s^3 −2st^2 +2ts^2 =b(t^3 −s^3 )  ⇒(1−b)(t^3 −s^3 )−2ts(t−s)=0  ⇒(t−s)[(1−b)(t^2 +ts+s^2 )−2ts)=0  ⇒1)t−s=0⇒t=s⇒c−x=x−a⇒x=((c+a)/2)=b  2)t=s⇒b−x=0⇒x=b  3) (1−b)t^2 −(1+b)s.t+(1−b)s^2 =0  t=(((1+b)s±(√((1+b)^2 s^2 −4(1−b)^2 s^2 )))/(2(1−b)))=  =(((1+b)s±s(√((1+b−2+2b)(1+b+2−2b))))/(2(1−b)))=  =(((1+b)s±s(√((3b−1)(3−b))))/(2(1−b)))=(m±n).s  [n=((√((3b−1)(3−b)))/(2(1−b))),m=((1+b)/(2(1−b)))]  ⇒(t/s)=m±n⇒(t^3 /s^3 )=(m±n)^3   ⇒((c−x)/(x−a))=(m±n)^3 ⇒((2x−(a+c))/(c−a))=((1−(m±n)^3 )/(1+(m±n)^3 ))  ⇒x=b+((1−(m±n)^3 )/(1+(m±n)^3 ))  x=b+((1−(((1+b±(√((3b−1)(3−b))))/(2(1−b))))^3 )/(1+(((1+b±(√((3b−1)(3−b))))/(2(1−b))))^3 )) .

cx=t3,xa=s3x=s3t32+a+c2a+c=c2+c=2(c1)=2b,ca=2cx3ax3=(cxx+a)((cx)23+(cx)(xa)3+(ax)23)(ts)(t2ts+s2)c+a=bxt3t2s+ts2st2+ts2s3=(a+c)(bx)t3s32st2+2ts2=2(b)(t3s32)t3s32st2+2ts2=b(t3s3)(1b)(t3s3)2ts(ts)=0(ts)[(1b)(t2+ts+s2)2ts)=01)ts=0t=scx=xax=c+a2=b2)t=sbx=0x=b3)(1b)t2(1+b)s.t+(1b)s2=0t=(1+b)s±(1+b)2s24(1b)2s22(1b)==(1+b)s±s(1+b2+2b)(1+b+22b)2(1b)==(1+b)s±s(3b1)(3b)2(1b)=(m±n).s[n=(3b1)(3b)2(1b),m=1+b2(1b)]ts=m±nt3s3=(m±n)3cxxa=(m±n)32x(a+c)ca=1(m±n)31+(m±n)3x=b+1(m±n)31+(m±n)3x=b+1(1+b±(3b1)(3b)2(1b))31+(1+b±(3b1)(3b)2(1b))3.

Commented by tawa tawa last updated on 26/Jun/17

wow. God bless you sir.

wow.Godblessyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com