Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 167964 by mnjuly1970 last updated on 30/Mar/22

Commented by greogoury55 last updated on 30/Mar/22

 = lim_(x→0)  ((1−cos ((((√x)−(√(sin x)))/( (√x)))))/x^4 )  = lim_(x→0)  ((2sin^2  ((((√x)−(√(sin x)))/(2(√x)))))/x^4 )  =(1/2)lim_(x→0) ((((√x)−(√(sin x)))/(x^2 (√x))))^2   =(1/2)[lim_(x→0) ((x−sin x)/x^3 ) .lim_(x→0)  ((√x)/( (√x)+(√(sin x)))) ]^2   =(1/2)[(1/6).lim_(x→0)  (1/(1+(√((sin x)/x)))) ]^2   =(1/2)×(1/(144)) = (1/(288))

$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\frac{\sqrt{{x}}−\sqrt{\mathrm{sin}\:{x}}}{\:\sqrt{{x}}}\right)}{{x}^{\mathrm{4}} } \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}^{\mathrm{2}} \:\left(\frac{\sqrt{{x}}−\sqrt{\mathrm{sin}\:{x}}}{\mathrm{2}\sqrt{{x}}}\right)}{{x}^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{{x}}−\sqrt{\mathrm{sin}\:{x}}}{{x}^{\mathrm{2}} \sqrt{{x}}}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{3}} }\:.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}}}{\:\sqrt{{x}}+\sqrt{\mathrm{sin}\:{x}}}\:\right]^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{6}}.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\frac{\mathrm{sin}\:{x}}{{x}}}}\:\right]^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{144}}\:=\:\frac{\mathrm{1}}{\mathrm{288}} \\ $$

Answered by qaz last updated on 30/Mar/22

(√((sin x)/x))=(1−(1/6)x^2 +(1/(120))x^4 +...)^(1/2) =1+(1/2)(−(1/6)x^2 +...)+...=1−(1/(12))x^2 +...  cos (1−(√((sin x)/x)))=1−(1/2)(1−(√((sin x)/x)))^2 +...=1−(1/2)((1/(12))x^2 +...)^2 +...=1−(1/(288))x^4 +o(x^4 )  lim_(x→0) ((1−cos (1−(√((sin x)/x))))/x^4 )  =lim_(x→0) (((1/(288))x^4 +o(x^4 ))/x^4 )  =(1/(288))

$$\sqrt{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}}=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{120}}\mathrm{x}^{\mathrm{4}} +...\right)^{\mathrm{1}/\mathrm{2}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{2}} +...\right)+...=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{12}}\mathrm{x}^{\mathrm{2}} +... \\ $$$$\mathrm{cos}\:\left(\mathrm{1}−\sqrt{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}}\right)=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\sqrt{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}}\right)^{\mathrm{2}} +...=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{12}}\mathrm{x}^{\mathrm{2}} +...\right)^{\mathrm{2}} +...=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{288}}\mathrm{x}^{\mathrm{4}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{4}} \right) \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{1}−\sqrt{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}}\right)}{\mathrm{x}^{\mathrm{4}} } \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{\mathrm{288}}\mathrm{x}^{\mathrm{4}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{4}} \right)}{\mathrm{x}^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{288}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com