All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 167964 by mnjuly1970 last updated on 30/Mar/22
Commented by greogoury55 last updated on 30/Mar/22
=limx→01−cos(x−sinxx)x4=limx→02sin2(x−sinx2x)x4=12limx→0(x−sinxx2x)2=12[limx→0x−sinxx3.limx→0xx+sinx]2=12[16.limx→011+sinxx]2=12×1144=1288
Answered by qaz last updated on 30/Mar/22
sinxx=(1−16x2+1120x4+...)1/2=1+12(−16x2+...)+...=1−112x2+...cos(1−sinxx)=1−12(1−sinxx)2+...=1−12(112x2+...)2+...=1−1288x4+o(x4)limx→01−cos(1−sinxx)x4=limx→01288x4+o(x4)x4=1288
Terms of Service
Privacy Policy
Contact: info@tinkutara.com