Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 167965 by mnjuly1970 last updated on 30/Mar/22

Answered by mindispower last updated on 01/Apr/22

Ω=∫_0 ^∞ 2((1−e^(−2x) )/((1+e^(−2x) )^2 x))e^(−x)   =−2∫_0 ^1 ((1−t^2 )/((1+t^2 )^2 ln(t)))   =−2∫_∞ ^1 ((1−(1/t^2 ))/((1+(1/t^2 ))^2 ln((1/t)))).−(dt/t^2 )      =−2∫_1 ^∞ ((1−t^2 )/((t^2 +1)^2 ln(t)))⇒2Ω=−2∫_0 ^∞ ((1−t^2 )/((1+t^2 )ln(t)))dt  f(a)=−2∫_0 ^∞ ((1−t^a )/((1+t^2 )^2 ln(t))),a∈[0,2]  f(0)=0,f(2)=2Ω  f′(a)=2∫_0 ^∞ (t^a /((1+t^2 )^2 ))dr  =2∫_0 ^(π/2) sin^a (t)cos^(2−a) (t)dt  =β(((a+1)/2),((3−a)/2))=((Γ(((a+1)/2))Γ(((3−a)/2)))/(Γ(2)))  =(((1−a)/2)).(π/(sin((π/2)(1+a))))=((π(1−a))/(2cos(((πa)/2))))  2Ω=∫_0 ^2 f′(a)da  (π/2)∫_0 ^1 ((1−a)/(cos(((πa)/2))))+∫_1 ^2 ((1−a)/(cos(((πa)/2))))  =(π/2)(∫_0 ^1 ((ada)/(sin(((πa)/2))))+∫_0 ^1 ((−udu)/(cos((π/2)(1+u))))    =π∫_0 ^1 ((daa)/(sin(((πa)/2))))=(4/π)∫_0 ^(π/2) (u/(sin(u)))du  ∫_0 ^(π/2) (u/(sin(u)))du=∫_0 ^(π/2) ((usin(u))/((1−cos(u))(1+cos(u))))du  =(1/2)[uln(((1−cosx)/(1+cos(x))))]−(1/2)∫_0 ^(π/2) ln(((1−cos(x))/(1+cos(x))))  =−∫_0 ^(π/2) ln(tg((u/2)))du=−2∫_0 ^1 ((ln(x))/(1+x^2 ))=2G  ⇒2Ω=(4/π).2G  Ω=∫_0 ^∞ ((tanh (x))/x).sech (x)dx=((4G)/π)

Ω=021e2x(1+e2x)2xex=2011t2(1+t2)2ln(t)=2111t2(1+1t2)2ln(1t).dtt2=211t2(t2+1)2ln(t)2Ω=201t2(1+t2)ln(t)dtf(a)=201ta(1+t2)2ln(t),a[0,2]f(0)=0,f(2)=2Ωf(a)=20ta(1+t2)2dr=20π2sina(t)cos2a(t)dt=β(a+12,3a2)=Γ(a+12)Γ(3a2)Γ(2)=(1a2).πsin(π2(1+a))=π(1a)2cos(πa2)2Ω=02f(a)daπ2011acos(πa2)+121acos(πa2)=π2(01adasin(πa2)+01uducos(π2(1+u))=π01daasin(πa2)=4π0π2usin(u)du0π2usin(u)du=0π2usin(u)(1cos(u))(1+cos(u))du=12[uln(1cosx1+cos(x))]120π2ln(1cos(x)1+cos(x))=0π2ln(tg(u2))du=201ln(x)1+x2=2G2Ω=4π.2GΩ=0tanh(x)x.sech(x)dx=4Gπ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com