All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 167965 by mnjuly1970 last updated on 30/Mar/22
Answered by mindispower last updated on 01/Apr/22
Ω=∫0∞21−e−2x(1+e−2x)2xe−x=−2∫011−t2(1+t2)2ln(t)=−2∫∞11−1t2(1+1t2)2ln(1t).−dtt2=−2∫1∞1−t2(t2+1)2ln(t)⇒2Ω=−2∫0∞1−t2(1+t2)ln(t)dtf(a)=−2∫0∞1−ta(1+t2)2ln(t),a∈[0,2]f(0)=0,f(2)=2Ωf′(a)=2∫0∞ta(1+t2)2dr=2∫0π2sina(t)cos2−a(t)dt=β(a+12,3−a2)=Γ(a+12)Γ(3−a2)Γ(2)=(1−a2).πsin(π2(1+a))=π(1−a)2cos(πa2)2Ω=∫02f′(a)daπ2∫011−acos(πa2)+∫121−acos(πa2)=π2(∫01adasin(πa2)+∫01−uducos(π2(1+u))=π∫01daasin(πa2)=4π∫0π2usin(u)du∫0π2usin(u)du=∫0π2usin(u)(1−cos(u))(1+cos(u))du=12[uln(1−cosx1+cos(x))]−12∫0π2ln(1−cos(x)1+cos(x))=−∫0π2ln(tg(u2))du=−2∫01ln(x)1+x2=2G⇒2Ω=4π.2GΩ=∫0∞tanh(x)x.sech(x)dx=4Gπ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com