All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 168053 by lapache last updated on 01/Apr/22
Solvethesystem{x+2y+3z+2t=22x+5y−8z+6t=53x+4y−5z+2t=4
Answered by MJS_new last updated on 01/Apr/22
3equations;4variables⇒parametricsolution(xyzt)=(2p1−2p0p)withp∈R
Answered by FelipeLz last updated on 03/Apr/22
x+2y+3z+2t+2x+5y−8z+6t−(3x+4y−5z+2t)=2+5−43x+7y−5z+8t−3x−4y+5z−2t=33y+6t=3y=1−2t∙3x+4y−5z+2t=43x+4y−5z+2t=2(x+2y+3z+2t)3x+4y−5z+2t=2x+4y+6z+4tx−11z−2t=0z=0→x−11(0)−2t=0x=2t∙2x+5y−8z+6t−2(x+2y+3z+2t)=5−2(2)2x+5y−8z+6t−2x−4y−6z−4t=1y−14z+2t=1y=1−2t→1−2t−14z+2t=114z=0⇒z=0∙x=α→y=1−α;z=0;t=α2y=β→x=1−β;z=0;t=1−β2t=γ→x=2γ;y=1−2γ;z=0S={(x,y,z,t)∣(x,y,z,t)=(α,1−α,0,α2)∀α∈R}S={(x,y,z,t)∣(x,y,z,t)=(1−β,β,0,1−β2)∀β∈R}S={(x,y,z,t)∣(x,y,z,t)=(2γ,1−2γ,0,γ)∀γ∈R}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com