Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 168138 by Shemson_buo last updated on 04/Apr/22

Answered by MJS_new last updated on 04/Apr/22

∫(dx/( (√(1−2x−x^2 ))))=       [t=arcsin ((x+1)/( (√2))) → dx=(√(1−2x−x^2 ))dt]  =∫dt=t=arcsin ((x+1)/( (√2))) +C

dx12xx2=[t=arcsinx+12dx=12xx2dt]=dt=t=arcsinx+12+C

Commented by MJS_new last updated on 04/Apr/22

in 3 steps  ∫(dx/( (√(1−2x−x^2 ))))=       [r=x+1 → dx=dr]  =∫(dr/( (√(2−r^2 ))))=       [s=(r/( (√2))) → dr=(√2)ds]  =∫(ds/( (√(1−s^2 ))))=       [t=arcsin s → ds=(√(1−s^2 ))dt]  =∫dt=t=arcsin s =arcsin (r/( (√2))) =  =arcsin ((x+1)/( (√2))) +C

in3stepsdx12xx2=[r=x+1dx=dr]=dr2r2=[s=r2dr=2ds]=ds1s2=[t=arcsinsds=1s2dt]=dt=t=arcsins=arcsinr2==arcsinx+12+C

Answered by Mathspace last updated on 04/Apr/22

I=∫   (dx/( (√(1−2x−x^2 ))))  we have 1−2x−x^2 =−(x^2 +2x−1)  =−(x^2 +2x+1−2)  =2−(x+1)^2  and changement  x+1=(√2)sint give  I=∫  (((√2)cost dt)/( (√2)cost))=∫ dt +C  =t+C=arcsin(((x+1)/( (√2))))+C

I=dx12xx2wehave12xx2=(x2+2x1)=(x2+2x+12)=2(x+1)2andchangementx+1=2sintgiveI=2costdt2cost=dt+C=t+C=arcsin(x+12)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com