Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 168187 by Mastermind last updated on 05/Apr/22

Prove that :   sinh^(−1) tanθ = log tan((θ/2)+(π/4))    Mastermind

$${Prove}\:{that}\::\: \\ $$$${sinh}^{−\mathrm{1}} {tan}\theta\:=\:{log}\:{tan}\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$

Answered by peter frank last updated on 06/Apr/22

sinh^(−1) x=ln (x+(√(x^2 −1)) )  x=tan θ  sinh^(−1) tan θ=ln (tan θ+sec θ)  ln (tan θ+sec θ)=ln (((1+sin θ)/(cos θ)))  ln (((1+sin θ)/(cos θ)))=ln (((cos (θ/2)+sin (θ/2))^2 )/(cos^2  (θ/2)−sin^2 (θ/2)))  =ln (((1+tan (θ/2))/(1−tan (θ/2))))=ln[ tan ((π/4)+(θ/2))]  sinh^(−1) tan θ=lntan [ ((π/4)+(θ/2))]

$$\mathrm{sinh}\:^{−\mathrm{1}} \mathrm{x}=\mathrm{ln}\:\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:\right) \\ $$$$\mathrm{x}=\mathrm{tan}\:\theta \\ $$$$\mathrm{sinh}\:^{−\mathrm{1}} \mathrm{tan}\:\theta=\mathrm{ln}\:\left(\mathrm{tan}\:\theta+\mathrm{sec}\:\theta\right) \\ $$$$\mathrm{ln}\:\left(\mathrm{tan}\:\theta+\mathrm{sec}\:\theta\right)=\mathrm{ln}\:\left(\frac{\mathrm{1}+\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}\right) \\ $$$$\mathrm{ln}\:\left(\frac{\mathrm{1}+\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}\right)=\mathrm{ln}\:\frac{\left(\mathrm{cos}\:\frac{\theta}{\mathrm{2}}+\mathrm{sin}\:\frac{\theta}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}−\mathrm{sin}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}} \\ $$$$=\mathrm{ln}\:\left(\frac{\mathrm{1}+\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}\right)=\mathrm{ln}\left[\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}+\frac{\theta}{\mathrm{2}}\right)\right] \\ $$$$\mathrm{sinh}\:^{−\mathrm{1}} \mathrm{tan}\:\theta=\mathrm{lntan}\:\left[\:\left(\frac{\pi}{\mathrm{4}}+\frac{\theta}{\mathrm{2}}\right)\right] \\ $$$$ \\ $$

Commented by Mastermind last updated on 07/Apr/22

Thanks

$${Thanks} \\ $$

Answered by Mathspace last updated on 05/Apr/22

argsh(tanθ)=ln(tanθ+(√(1+tan^2 θ)))  =ln(((sinθ)/(cosθ))+(1/(cosθ)))=ln(((1+sinθ)/(cosθ)))  =ln(((1+((2t)/(1+t^2 )))/((1−t^2 )/(1+t^2 ))))=ln(((t^2 +2t+1)/(1−t^2 )))(t=tan((θ/2)))  =ln((((1+t)^2 )/((1−t)(1+t))))=ln(((1+t)/(1−t)))  =ln(((tan((π/4))+tan((θ/2)))/(1−tan((π/4))tan((θ/2)))))  =ln{tan((θ/2)+(π/4))}

$${argsh}\left({tan}\theta\right)={ln}\left({tan}\theta+\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\right) \\ $$$$={ln}\left(\frac{{sin}\theta}{{cos}\theta}+\frac{\mathrm{1}}{{cos}\theta}\right)={ln}\left(\frac{\mathrm{1}+{sin}\theta}{{cos}\theta}\right) \\ $$$$={ln}\left(\frac{\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\right)={ln}\left(\frac{{t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}}{\mathrm{1}−{t}^{\mathrm{2}} }\right)\left({t}={tan}\left(\frac{\theta}{\mathrm{2}}\right)\right) \\ $$$$={ln}\left(\frac{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{\left(\mathrm{1}−{t}\right)\left(\mathrm{1}+{t}\right)}\right)={ln}\left(\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\right) \\ $$$$={ln}\left(\frac{{tan}\left(\frac{\pi}{\mathrm{4}}\right)+{tan}\left(\frac{\theta}{\mathrm{2}}\right)}{\mathrm{1}−{tan}\left(\frac{\pi}{\mathrm{4}}\right){tan}\left(\frac{\theta}{\mathrm{2}}\right)}\right) \\ $$$$={ln}\left\{{tan}\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)\right\} \\ $$

Commented by Mastermind last updated on 07/Apr/22

  Thanks

$$ \\ $$$${Thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com