Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 168187 by Mastermind last updated on 05/Apr/22

Prove that :   sinh^(−1) tanθ = log tan((θ/2)+(π/4))    Mastermind

Provethat:sinh1tanθ=logtan(θ2+π4)Mastermind

Answered by peter frank last updated on 06/Apr/22

sinh^(−1) x=ln (x+(√(x^2 −1)) )  x=tan θ  sinh^(−1) tan θ=ln (tan θ+sec θ)  ln (tan θ+sec θ)=ln (((1+sin θ)/(cos θ)))  ln (((1+sin θ)/(cos θ)))=ln (((cos (θ/2)+sin (θ/2))^2 )/(cos^2  (θ/2)−sin^2 (θ/2)))  =ln (((1+tan (θ/2))/(1−tan (θ/2))))=ln[ tan ((π/4)+(θ/2))]  sinh^(−1) tan θ=lntan [ ((π/4)+(θ/2))]

sinh1x=ln(x+x21)x=tanθsinh1tanθ=ln(tanθ+secθ)ln(tanθ+secθ)=ln(1+sinθcosθ)ln(1+sinθcosθ)=ln(cosθ2+sinθ2)2cos2θ2sin2θ2=ln(1+tanθ21tanθ2)=ln[tan(π4+θ2)]sinh1tanθ=lntan[(π4+θ2)]

Commented by Mastermind last updated on 07/Apr/22

Thanks

Thanks

Answered by Mathspace last updated on 05/Apr/22

argsh(tanθ)=ln(tanθ+(√(1+tan^2 θ)))  =ln(((sinθ)/(cosθ))+(1/(cosθ)))=ln(((1+sinθ)/(cosθ)))  =ln(((1+((2t)/(1+t^2 )))/((1−t^2 )/(1+t^2 ))))=ln(((t^2 +2t+1)/(1−t^2 )))(t=tan((θ/2)))  =ln((((1+t)^2 )/((1−t)(1+t))))=ln(((1+t)/(1−t)))  =ln(((tan((π/4))+tan((θ/2)))/(1−tan((π/4))tan((θ/2)))))  =ln{tan((θ/2)+(π/4))}

argsh(tanθ)=ln(tanθ+1+tan2θ)=ln(sinθcosθ+1cosθ)=ln(1+sinθcosθ)=ln(1+2t1+t21t21+t2)=ln(t2+2t+11t2)(t=tan(θ2))=ln((1+t)2(1t)(1+t))=ln(1+t1t)=ln(tan(π4)+tan(θ2)1tan(π4)tan(θ2))=ln{tan(θ2+π4)}

Commented by Mastermind last updated on 07/Apr/22

  Thanks

Thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com