Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 1682 by Rasheed Soomro last updated on 31/Aug/15

Let ∣ S ∣ denotes number of elements in a set S ,   N and R are sets of natural and real numbers   respectively:  ∣ N ∣=^(?) ∣ R ∣

$${Let}\:\mid\:\mathrm{S}\:\mid\:{denotes}\:{number}\:{of}\:{elements}\:{in}\:{a}\:{set}\:\mathrm{S}\:,\: \\ $$$$\mathbb{N}\:{and}\:\mathbb{R}\:{are}\:{sets}\:{of}\:{natural}\:{and}\:{real}\:{numbers}\: \\ $$$${respectively}: \\ $$$$\mid\:\mathbb{N}\:\mid\overset{?} {=}\mid\:\mathbb{R}\:\mid \\ $$

Commented by 112358 last updated on 31/Aug/15

∣N∣≠∣R∣   For a set X being a proper subset  of another set Y, we have that  ∣X∣<∣Y∣. i.e If X⊂Y⇒∣X∣<∣Y∣.  Since N⊂R⇒∣N∣<∣R∣. This  informal explanation does not  provide a rigorous proof which  shows that the infinity of the set  R is larger than that of the set N.  I haven′t studied set theory to an  advanced level. I have read that  if ∣N∣ has its value denoted by ℵ_0   then,according to the continuum  hypothesis,ℵ_0 <∣R∣.

$$\mid\mathbb{N}\mid\neq\mid\mathbb{R}\mid\: \\ $$$${For}\:{a}\:{set}\:{X}\:{being}\:{a}\:{proper}\:{subset} \\ $$$${of}\:{another}\:{set}\:{Y},\:{we}\:{have}\:{that} \\ $$$$\mid{X}\mid<\mid{Y}\mid.\:{i}.{e}\:{If}\:{X}\subset{Y}\Rightarrow\mid{X}\mid<\mid{Y}\mid. \\ $$$${Since}\:\mathbb{N}\subset\mathbb{R}\Rightarrow\mid\mathbb{N}\mid<\mid\mathbb{R}\mid.\:{This} \\ $$$${informal}\:{explanation}\:{does}\:{not} \\ $$$${provide}\:{a}\:{rigorous}\:{proof}\:{which} \\ $$$${shows}\:{that}\:{the}\:{infinity}\:{of}\:{the}\:{set} \\ $$$$\mathbb{R}\:{is}\:{larger}\:{than}\:{that}\:{of}\:{the}\:{set}\:\mathbb{N}. \\ $$$${I}\:{haven}'{t}\:{studied}\:{set}\:{theory}\:{to}\:{an} \\ $$$${advanced}\:{level}.\:{I}\:{have}\:{read}\:{that} \\ $$$${if}\:\mid\mathbb{N}\mid\:{has}\:{its}\:{value}\:{denoted}\:{by}\:\aleph_{\mathrm{0}} \\ $$$${then},{according}\:{to}\:{the}\:{continuum} \\ $$$${hypothesis},\aleph_{\mathrm{0}} <\mid\mathbb{R}\mid.\: \\ $$$$ \\ $$$$ \\ $$

Commented by 123456 last updated on 31/Aug/15

if two sets are equal you can make a  1−1 function with them, a set that  are 1−1 with N are called contable  however R dont is contable  you can get number into [0,1]  0  0,1  0,2  ...  and you still miss some number  in other hand Q are contable and this  is showed by diagolization argument  so ∣Q∣=∣N∣

$$\mathrm{if}\:\mathrm{two}\:\mathrm{sets}\:\mathrm{are}\:\mathrm{equal}\:\mathrm{you}\:\mathrm{can}\:\mathrm{make}\:\mathrm{a} \\ $$$$\mathrm{1}−\mathrm{1}\:\mathrm{function}\:\mathrm{with}\:\mathrm{them},\:\mathrm{a}\:\mathrm{set}\:\mathrm{that} \\ $$$$\mathrm{are}\:\mathrm{1}−\mathrm{1}\:\mathrm{with}\:\mathbb{N}\:\mathrm{are}\:\mathrm{called}\:\mathrm{contable} \\ $$$$\mathrm{however}\:\mathbb{R}\:\mathrm{dont}\:\mathrm{is}\:\mathrm{contable} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{get}\:\mathrm{number}\:\mathrm{into}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\mathrm{0} \\ $$$$\mathrm{0},\mathrm{1} \\ $$$$\mathrm{0},\mathrm{2} \\ $$$$... \\ $$$$\mathrm{and}\:\mathrm{you}\:\mathrm{still}\:\mathrm{miss}\:\mathrm{some}\:\mathrm{number} \\ $$$$\mathrm{in}\:\mathrm{other}\:\mathrm{hand}\:\mathbb{Q}\:\mathrm{are}\:\mathrm{contable}\:\mathrm{and}\:\mathrm{this} \\ $$$$\mathrm{is}\:\mathrm{showed}\:\mathrm{by}\:\mathrm{diagolization}\:\mathrm{argument} \\ $$$$\mathrm{so}\:\mid\mathbb{Q}\mid=\mid\mathbb{N}\mid \\ $$

Commented by Rasheed Ahmad last updated on 31/Aug/15

X⊂Y ⇒∣X∣<∣Y∣  {1,3,5,...}⊂{1,2,3,...}  ⇒^? ∣ {1,3,5,...} ∣ <^(?)  ∣ {1,2,3,...}∣  While:  Both sets are equivalent.  (There is 1−1 correspondance  between them)  They are countable and their  infinities are equal.  I think the above law works only in case of  finite sets.

$$\boldsymbol{\mathrm{X}}\subset\boldsymbol{\mathrm{Y}}\:\Rightarrow\mid\boldsymbol{\mathrm{X}}\mid<\mid\boldsymbol{\mathrm{Y}}\mid \\ $$$$\left\{\mathrm{1},\mathrm{3},\mathrm{5},...\right\}\subset\left\{\mathrm{1},\mathrm{2},\mathrm{3},...\right\} \\ $$$$\overset{?} {\Rightarrow}\mid\:\left\{\mathrm{1},\mathrm{3},\mathrm{5},...\right\}\:\mid\:\overset{?} {<}\:\mid\:\left\{\mathrm{1},\mathrm{2},\mathrm{3},...\right\}\mid \\ $$$${While}: \\ $$$${Both}\:{sets}\:{are}\:{equivalent}. \\ $$$$\left({There}\:{is}\:\mathrm{1}−\mathrm{1}\:{correspondance}\right. \\ $$$$\left.{between}\:{them}\right) \\ $$$${They}\:{are}\:{countable}\:{and}\:{their} \\ $$$${infinities}\:{are}\:{equal}. \\ $$$${I}\:{think}\:{the}\:{above}\:{law}\:{works}\:{only}\:{in}\:{case}\:{of} \\ $$$${finite}\:{sets}. \\ $$$$ \\ $$

Commented by 123456 last updated on 31/Aug/15

yes, if X⊂Y,∣X∣≤∣Y∣  try to search hilbert hotel on google  its will help yoj  in general a infinite set can also have  infinite substes that are infinites  the peoblem lead to trasnfinites number  ℵ_0 =∣N∣  ℵ_1 =∣R∣=2^ℵ_0    or something like this  the continuous hipothesys s about a existence  of a set that are large than natural,  but small than real  ∣A∣=ℵ  ℵ_0 <ℵ<ℵ_1   the most strange its that the answer  is yes and no, also with set axioms  you cannot proof or disproof it  wich leads to godel imcopletude theorems

$$\mathrm{yes},\:\mathrm{if}\:\mathrm{X}\subset\mathrm{Y},\mid\mathrm{X}\mid\leqslant\mid\mathrm{Y}\mid \\ $$$$\mathrm{try}\:\mathrm{to}\:\mathrm{search}\:\mathrm{hilbert}\:\mathrm{hotel}\:\mathrm{on}\:\mathrm{google} \\ $$$$\mathrm{its}\:\mathrm{will}\:\mathrm{help}\:\mathrm{yoj} \\ $$$$\mathrm{in}\:\mathrm{general}\:\mathrm{a}\:\mathrm{infinite}\:\mathrm{set}\:\mathrm{can}\:\mathrm{also}\:\mathrm{have} \\ $$$$\mathrm{infinite}\:\mathrm{substes}\:\mathrm{that}\:\mathrm{are}\:\mathrm{infinites} \\ $$$$\mathrm{the}\:\mathrm{peoblem}\:\mathrm{lead}\:\mathrm{to}\:\mathrm{trasnfinites}\:\mathrm{number} \\ $$$$\aleph_{\mathrm{0}} =\mid\mathbb{N}\mid \\ $$$$\aleph_{\mathrm{1}} =\mid\mathbb{R}\mid=\mathrm{2}^{\aleph_{\mathrm{0}} } \\ $$$$\mathrm{or}\:\mathrm{something}\:\mathrm{like}\:\mathrm{this} \\ $$$$\mathrm{the}\:\mathrm{continuous}\:\mathrm{hipothesys}\:\mathrm{s}\:\mathrm{about}\:\mathrm{a}\:\mathrm{existence} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{set}\:\mathrm{that}\:\mathrm{are}\:\mathrm{large}\:\mathrm{than}\:\mathrm{natural}, \\ $$$$\mathrm{but}\:\mathrm{small}\:\mathrm{than}\:\mathrm{real} \\ $$$$\mid\mathrm{A}\mid=\aleph \\ $$$$\aleph_{\mathrm{0}} <\aleph<\aleph_{\mathrm{1}} \\ $$$$\mathrm{the}\:\mathrm{most}\:\mathrm{strange}\:\mathrm{its}\:\mathrm{that}\:\mathrm{the}\:\mathrm{answer} \\ $$$$\mathrm{is}\:\mathrm{yes}\:\mathrm{and}\:\mathrm{no},\:\mathrm{also}\:\mathrm{with}\:\mathrm{set}\:\mathrm{axioms} \\ $$$$\mathrm{you}\:\mathrm{cannot}\:\mathrm{proof}\:\mathrm{or}\:\mathrm{disproof}\:\mathrm{it} \\ $$$$\mathrm{wich}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{godel}\:\mathrm{imcopletude}\:\mathrm{theorems} \\ $$

Commented by Rasheed Soomro last updated on 03/Sep/15

T^(H^A N) Ks a L^O T_!

$$\mathrm{T}^{\mathrm{H}^{\mathrm{A}} \mathrm{N}} \mathrm{Ks}\:\mathrm{a}\:\mathrm{L}^{\mathrm{O}} \mathrm{T}_{!} \: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com