All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 168338 by infinityaction last updated on 08/Apr/22
Answered by Mathspace last updated on 08/Apr/22
∫0∞sin2(ax)x2dxa>0=ax=t∫0∞sin2(t)(ta)2dta=a∫0∞sin2tt2dtbyparts∫0∞sin2tt2dt=[−1tsin2t]0→∞+∫0∞1t(2sint.cost)dt=0+∫0∞sin(2t)tdt(2t=z)=2∫0∞sinzzdz2=∫0∞sinzzdz=π2⇒∫0∞sin2(ax)x2dx=πa2ifa<0wegetthesameresultdue?tox→sin2(ax)x2iseven
Commented by infinityaction last updated on 08/Apr/22
thankyousir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com