All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 168355 by Mathspace last updated on 08/Apr/22
letUn=∫01(xn)1−x2n+1)dx1)findaequivalentofUn(n∼∞)2)studythecomvergenceofΣUn
Answered by Mathspace last updated on 09/Apr/22
changemrntx2n+1=tgivex=t12n+1Un=∫01tn2n+11−t12n+1t12n+1−1=12n+1∫01tn+12n+1−1(1−t)12dt=12n+1∫01tn+12n+1−1(1−t)32−1dt=12n+1B(n+12n+1,32)=12n+1Γ(n+12n+1).Γ(32)Γ(n+12n+1+32)Γ(32)=Γ(12+1)=12Γ(12)=π2n+12n+1=12(2n+22n+1)=12(1+12n+1)=12+12(2n+1)∼12⇒n+12n+1+32∼12+32=2⇒Un∼π2(2n+1)×Γ(12)Γ(2)⇒Un∼π2(2n+1)∼π4n2)Σπ4nisdivervente⇒ΣUnisdivergente
Terms of Service
Privacy Policy
Contact: info@tinkutara.com