Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 168355 by Mathspace last updated on 08/Apr/22

let U_n =∫_0 ^1 (x^n )(√(1−x^(2n+1) )))dx  1) find a equivalent of U_n (n∼∞)  2) study the comvergence of Σ U_n

$$\left.{let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{{n}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}{n}+\mathrm{1}} }\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{equivalent}\:{of}\:{U}_{{n}} \left({n}\sim\infty\right) \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{comvergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Answered by Mathspace last updated on 09/Apr/22

changemrnt x^(2n+1) =t give x=t^(1/(2n+1))   U_n =∫_0 ^1 t^(n/(2n+1))   (√(1−t))(1/(2n+1))t^((1/(2n+1))−1)   =(1/(2n+1))∫_0 ^1  t^(((n+1)/(2n+1))−1) (1−t)^(1/2)   dt  =(1/(2n+1))∫_0 ^1  t^(((n+1)/(2n+1))−1) (1−t)^((3/2)−1) dt  =(1/(2n+1))B(((n+1)/(2n+1)),(3/2))  =(1/(2n+1))((Γ(((n+1)/(2n+1))).Γ((3/2)))/(Γ(((n+1)/(2n+1))+(3/2))))  Γ((3/2))=Γ((1/2)+1)=(1/2)Γ((1/2))=((√π)/2)  ((n+1)/(2n+1))=(1/2)(((2n+2)/(2n+1)))=(1/2)(1+(1/(2n+1)))  =(1/2)+(1/(2(2n+1)))∼(1/2) ⇒  ((n+1)/(2n+1))+(3/2)∼(1/2)+(3/2)=2 ⇒  U_n ∼((√π)/(2(2n+1)))×((Γ((1/2)))/(Γ(2)))  ⇒U_n ∼(π/(2(2n+1)))∼(π/(4n))  2) Σ(π/(4n)) is divervente ⇒ΣU_n is  divergente

$${changemrnt}\:{x}^{\mathrm{2}{n}+\mathrm{1}} ={t}\:{give}\:{x}={t}^{\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}} \\ $$$${U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\frac{{n}}{\mathrm{2}{n}+\mathrm{1}}} \:\:\sqrt{\mathrm{1}−{t}}\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{t}^{\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\frac{{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\frac{{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{B}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}},\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\frac{\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right).\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\frac{{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}{n}+\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}{n}+\mathrm{1}\right)}\sim\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$$\frac{{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}+\frac{\mathrm{3}}{\mathrm{2}}\sim\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}=\mathrm{2}\:\Rightarrow \\ $$$${U}_{{n}} \sim\frac{\sqrt{\pi}}{\mathrm{2}\left(\mathrm{2}{n}+\mathrm{1}\right)}×\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{2}\right)} \\ $$$$\Rightarrow{U}_{{n}} \sim\frac{\pi}{\mathrm{2}\left(\mathrm{2}{n}+\mathrm{1}\right)}\sim\frac{\pi}{\mathrm{4}{n}} \\ $$$$\left.\mathrm{2}\right)\:\Sigma\frac{\pi}{\mathrm{4}{n}}\:{is}\:{divervente}\:\Rightarrow\Sigma{U}_{{n}} {is} \\ $$$${divergente} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com