Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 168367 by MdNafiz last updated on 09/Apr/22

91x^2 +84y^2 −24xy+406x−392y+799=0  find the eccentricity,focus,length of major & minor axis,directrix & length of eccentric perpendicular

91x2+84y224xy+406x392y+799=0 findtheeccentricity,focus,lengthofmajor&minoraxis,directrix&lengthofeccentricperpendicular

Answered by mr W last updated on 10/Apr/22

91x^2 −2(12y−203)x+84y^2 −392y+799=0  Δ=(12y−203)^2 −91(84y^2 −392y+799)≥0  75y^2 −308y+315≤0  ((154−(√(91)))/(75))≤y≤((154+(√(91)))/(75))  ⇒y_C =((154)/(75))  84y^2 −2(12x+196)y+91x^2 +406x+799=0  Δ=(12x+196)^2 −84(91x^2 +406x+799)≥0  75x^2 +294x+287≤0  ((−147−2(√(21)))/(75))≤x≤((−147+2(√(21)))/(75))  ⇒x_C =−((147)/(75))  x=−((147)/(75))+ρ cos θ  y=((154)/(75))+ρ sin θ  91(−((147)/(75))+ρ cos θ)^2 +84(((154)/(75))+ρ sin θ)^2 −24(−((147)/(75))+ρ cos θ)(((154)/(75))+ρ sin θ)+406(−((147)/(75))+ρ cos θ)−392(((154)/(75))+ρ sin θ)+799=0  (175+7 cos 2θ−24 sin 2θ)ρ^2 −(8/3)=0  ρ^2 =(8/(3(175+7 cos 2θ−24 sin 2θ)))  ρ^2 =(8/(3[175+25((7/(25)) cos 2θ−((24)/(25)) sin 2θ)]))  ρ^2 =(8/(75[7−sin (2θ−tan^(−1) (7/(24)))]))  ρ_(max) ^2 =(8/(75(7−1)))  ⇒ρ_(max) =(2/(15))=semi major axis a  at 2θ−tan^(−1) (7/(24))=(π/2) or θ_1 =(π/4)+(1/2)tan^(−1) (7/(24))  ρ_(min) ^2 =(8/(75(7+1)))  ⇒ρ_(min) =((2(√6))/(45))=semi minor axis b   at 2θ−tan^(−1) (7/(24))=−(π/2) or θ_2 =−(π/4)+(1/2)tan^(−1) (7/(24))  tan θ_1 =(4/3)  tan θ_2 =−(3/4)  ...

91x22(12y203)x+84y2392y+799=0 Δ=(12y203)291(84y2392y+799)0 75y2308y+3150 1549175y154+9175 yC=15475 84y22(12x+196)y+91x2+406x+799=0 Δ=(12x+196)284(91x2+406x+799)0 75x2+294x+2870 14722175x147+22175 xC=14775 x=14775+ρcosθ y=15475+ρsinθ 91(14775+ρcosθ)2+84(15475+ρsinθ)224(14775+ρcosθ)(15475+ρsinθ)+406(14775+ρcosθ)392(15475+ρsinθ)+799=0 (175+7cos2θ24sin2θ)ρ283=0 ρ2=83(175+7cos2θ24sin2θ) ρ2=83[175+25(725cos2θ2425sin2θ)] ρ2=875[7sin(2θtan1724)] ρmax2=875(71) ρmax=215=semimajoraxisa at2θtan1724=π2orθ1=π4+12tan1724 ρmin2=875(7+1) ρmin=2645=semiminoraxisb at2θtan1724=π2orθ2=π4+12tan1724 tanθ1=43 tanθ2=34 ...

Commented byTawa11 last updated on 10/Apr/22

Great sir.

Greatsir.

Commented bymr W last updated on 10/Apr/22

Commented bymr W last updated on 10/Apr/22

a=(2/(15)), b=((2(√6))/(45))  c=(√(a^2 −b^2 ))=((2(√3))/(45))  e=(√(1−(b^2 /a^2 )))=((√6)/3)

a=215,b=2645 c=a2b2=2345 e=1b2a2=63

Terms of Service

Privacy Policy

Contact: info@tinkutara.com