All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 168459 by BegamovSirojiddin last updated on 11/Apr/22
Answered by Mathspace last updated on 11/Apr/22
I=∫dx(x2+x+1)52I=∫dx((x+12)2+34)52(x+12=32tantI=∫32(1+tan2t)dt(34)52(1+tan2t)52=32(43)52∫dt(1+tan2t)32=32(43)52∫cos3tdtcos3x=(eix+e−ix2)3=18(e3ix+3e2ix.e−ix+3eix.e−2ix+e−3ix)=18(e3ix+e−3ix+3(eix+e−ix)}=18(2cos(3x)+6cosx)=14cos(3x)+34cosx⇒∫cos3t=14∫cos(3t)dt+34∫costdt=112sin(3t)+34sint+λbut=t=arctan(2x+13)⇒⇒I=32(43)52{112sin(3arctan(2x+13)+34sin(arctan(2x+13))+λ}
Answered by MJS_new last updated on 11/Apr/22
∫dx(x2+x+1)5/2=[t=2x+1+2x2+x+13→dx=x2+x+1tdt]=2569∫t3(t2+1)4dt=2569∫(t(t2+1)3−t(t2+1)4)dt==−649(t2+1)2+12827(t2+1)3=−64(3t2+1)27(t2+1)3==2(2x+1)(8x2+8x+11)27(x2+x+1)3/2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com