Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 168613 by LEKOUMA last updated on 14/Apr/22

Resolve   1) x(dy/dx)−y=y^3   2) (x−y)ydx−x^2 dy=0  3) (2x−y)dx+(4x−2y+3)dy=0

Resolve1)xdydxy=y32)(xy)ydxx2dy=03)(2xy)dx+(4x2y+3)dy=0

Commented by Mastermind last updated on 14/Apr/22

  Solution 1  x(dy/dx)−y=y^3   ⇒ (1/y^3 )(dy/dx)−(1/(xy^2 ))=(1/x) .........(1)  put z=−(1/y^2 ) , so that (dz/dx)=2(1/y^3 )(dy/dx)  ⇒(1/2)(dz/dx)=(1/y^3 )(dy/dx)  from (1), we have  (1/2)(dz/dx)−(z/x)=(1/x)  multiply all through by 2, then  (dz/dx)−((2z)/x)=(2/x) ........(2)  Now, IF = e^(∫−(2/x)) ⇒e^(ln(x^(−2) ))   ⇒ x^(−2) =(1/x^2 )  multiply both sides by IF  we have, (1/x^2 )((dz/dx)−((2z)/x))=(2/x^3 )  Now, (d/dx)(z∙(1/x^2 ))=(2/x^3 )  d(z∙(1/x^2 ))=(2/x^3 )dx  On integrating, we get  (z/x^2 )=−(1/x^2 )+c  ⇒z=−1+cx^2   putting z=−(1/y^2 )  We have,   −(1/y^2 )=−1+cx^2   ⇒ (1/y^2 )=1−cx^2                                          Resolved    Mastermind

Solution1xdydxy=y31y3dydx1xy2=1x.........(1)putz=1y2,sothatdzdx=21y3dydx12dzdx=1y3dydxfrom(1),wehave12dzdxzx=1xmultiplyallthroughby2,thendzdx2zx=2x........(2)Now,IF=e2xeln(x2)x2=1x2multiplybothsidesbyIFwehave,1x2(dzdx2zx)=2x3Now,ddx(z1x2)=2x3d(z1x2)=2x3dxOnintegrating,wegetzx2=1x2+cz=1+cx2puttingz=1y2Wehave,1y2=1+cx21y2=1cx2ResolvedMastermind

Answered by mr W last updated on 15/Apr/22

(1)  (dy/(y(1+y^2 )))=(dx/x)  ((1/y)−(y/(1+y^2 )))dy=(dx/x)  ln y−(1/2)ln (1+y^2 )=ln x+C  ⇒(y^2 /( 1+y^2 ))=Cx^2   or  ⇒(1−Cx^2 )(1+y^2 )=1  or  ⇒(1/(1+y^2 ))=1−Cx^2

(1)dyy(1+y2)=dxx(1yy1+y2)dy=dxxlny12ln(1+y2)=lnx+Cy21+y2=Cx2or(1Cx2)(1+y2)=1or11+y2=1Cx2

Answered by mr W last updated on 15/Apr/22

(2)  (dy/dx)=(((x−y)y)/x^2 )  y=xt  (dy/dx)=t+x(dt/dx)  t+x(dt/dx)=t(1−t)  x(dt/dx)=−t^2   (dt/t^2 )=−(dx/x)  ∫(dt/t^2 )=−∫(dx/x)  −(1/t)=−ln x−C  (x/y)=ln x+C  ⇒y=(x/(ln x+C))

(2)dydx=(xy)yx2y=xtdydx=t+xdtdxt+xdtdx=t(1t)xdtdx=t2dtt2=dxxdtt2=dxx1t=lnxCxy=lnx+Cy=xlnx+C

Answered by mr W last updated on 15/Apr/22

(3)  (dy/dx)=((−2x+y)/(4x−2y+3))  let u=−2x+y  (du/dx)=−2+(dy/dx)  2+(du/dx)=(u/(−2u+3))  (du/dx)=((5u−6)/(−2u+3))  (((2u−3)du)/(5u−6))=−dx  (((10u−12−3)du)/(5u−6))=−5dx  (2−(3/(5u−6)))du=−5dx  2u−(3/5)ln (5u−6)=−5x+C  −4x+2y−(3/5)ln (−10x+5y−6)=−5x+C  ⇒x+2y−(3/5)ln (−10x+5y−6)=C

(3)dydx=2x+y4x2y+3letu=2x+ydudx=2+dydx2+dudx=u2u+3dudx=5u62u+3(2u3)du5u6=dx(10u123)du5u6=5dx(235u6)du=5dx2u35ln(5u6)=5x+C4x+2y35ln(10x+5y6)=5x+Cx+2y35ln(10x+5y6)=C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com