Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 168707 by safojontoshtemirov last updated on 16/Apr/22

Commented by safojontoshtemirov last updated on 16/Apr/22

help me

helpme

Answered by mindispower last updated on 19/Apr/22

sin(2x)=((2tg(x))/(1+tg^2 (x)))  ⇔∫_0 ^1 ((2xln(1+x))/(1+x^2 ))−∫_0 ^1 ((xln(1+x^2 ))/(1+x^2 ))  A−B  A=∫_0 ^1 ((ln(1+x))/(x+i))+((ln(1+x))/(x−i))dx=2Re{∫_0 ^1 ((ln(1+x))/(x+i))d(3/)(3/))x})  =2Re{ln(2)ln(1+i)−∫_0 ^1 ((ln(x+i))/(1+x))dx}  =ln^2 (2)−2Re∫_1 ^2 ((ln(u−1+i))/u)du  u=(1−i)t  A=ln^2 (2)−2Re∫_((1+i)/2) ^((1+i)) ((ln((i−1)(1−t))/t)dt  ln(i−1)=ln((√2))+((3i𝛑)/4)  A=ln^2 (2)−2Re(ln((√2))+((3iπ)/4))ln(2)  +2Re(−∫_((1+i)/2) ^(1+i) ((ln(1−t))/t)dt)  =2Re(Li_2 (1+i)−Li_2 (((1+i)/2)))  =Li_2 (1+i)−Li_2 (((1+i)/2))−Li_2 (((1−i)/2))+Li_2 (1−i)  Li_2 (z)+li_2 (1−z)=ζ(2)−ln(z)ln(1−z)  z=((1+i)/2)⇒li_2 (((1+i)/2))+li_2 (((1−i)/2))=(π^2 /6)−ln((e^(i(π/4)) /( (√2))))ln((e^(−((iπ)/4)) /( (√2))))  =ζ(2)−(ln((1/( (√2))))+((iπ)/4))(ln((1/( (√2))))−i(π/4))  =ζ(2)−((ln^2 (2))/4)−(π^2 /(16))  li_2 (1−z)+Li_2 (1−(1/z))=−((ln^2 (z))/2)  li_2 (1−i)+Li_2 (1+i)=(π^2 /8)  (π^2 /8)−(π^2 /6)+(π^2 /(16))+((ln^2 (2))/4)=(π^2 /(48))+((ln^2 (2))/4)  B=(1/2)∫_0 ^1 ((2x)/(1+x^2 ))ln(1+x^2 )dx=(1/4)ln^2 (2)  we Get  ∫_0 ^(π/4) tg(x)ln(1+sin(2x))dx=A−B=(π^2 /(48))

sin(2x)=2tg(x)1+tg2(x)012xln(1+x)1+x201xln(1+x2)1+x2ABA=01ln(1+x)x+i+ln(1+x)xidx=2Re{01ln(1+x)x+id33)x})=2Re{ln(2)ln(1+i)01ln(x+i)1+xdx}=ln2(2)2Re12ln(u1+i)uduu=(1i)tA=ln2(2)2Re1+i2(1+i)ln((i1)(1t)tdtln(i1)=ln(2)+3iπ4A=ln2(2)2Re(ln(2)+3iπ4)ln(2)+2Re(1+i21+iln(1t)tdt)=2Re(Li2(1+i)Li2(1+i2))=Li2(1+i)Li2(1+i2)Li2(1i2)+Li2(1i)Li2(z)+li2(1z)=ζ(2)ln(z)ln(1z)z=1+i2li2(1+i2)+li2(1i2)=π26ln(eiπ42)ln(eiπ42)=ζ(2)(ln(12)+iπ4)(ln(12)iπ4)=ζ(2)ln2(2)4π216li2(1z)+Li2(11z)=ln2(z)2li2(1i)+Li2(1+i)=π28π28π26+π216+ln2(2)4=π248+ln2(2)4B=12012x1+x2ln(1+x2)dx=14ln2(2)weGet0π4tg(x)ln(1+sin(2x))dx=AB=π248

Terms of Service

Privacy Policy

Contact: info@tinkutara.com