All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 168707 by safojontoshtemirov last updated on 16/Apr/22
Commented by safojontoshtemirov last updated on 16/Apr/22
helpme
Answered by mindispower last updated on 19/Apr/22
sin(2x)=2tg(x)1+tg2(x)⇔∫012xln(1+x)1+x2−∫01xln(1+x2)1+x2A−BA=∫01ln(1+x)x+i+ln(1+x)x−idx=2Re{∫01ln(1+x)x+id33)x})=2Re{ln(2)ln(1+i)−∫01ln(x+i)1+xdx}=ln2(2)−2Re∫12ln(u−1+i)uduu=(1−i)tA=ln2(2)−2Re∫1+i2(1+i)ln((i−1)(1−t)tdtln(i−1)=ln(2)+3iπ4A=ln2(2)−2Re(ln(2)+3iπ4)ln(2)+2Re(−∫1+i21+iln(1−t)tdt)=2Re(Li2(1+i)−Li2(1+i2))=Li2(1+i)−Li2(1+i2)−Li2(1−i2)+Li2(1−i)Li2(z)+li2(1−z)=ζ(2)−ln(z)ln(1−z)z=1+i2⇒li2(1+i2)+li2(1−i2)=π26−ln(eiπ42)ln(e−iπ42)=ζ(2)−(ln(12)+iπ4)(ln(12)−iπ4)=ζ(2)−ln2(2)4−π216li2(1−z)+Li2(1−1z)=−ln2(z)2li2(1−i)+Li2(1+i)=π28π28−π26+π216+ln2(2)4=π248+ln2(2)4B=12∫012x1+x2ln(1+x2)dx=14ln2(2)weGet∫0π4tg(x)ln(1+sin(2x))dx=A−B=π248
Terms of Service
Privacy Policy
Contact: info@tinkutara.com