Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 168732 by mnjuly1970 last updated on 16/Apr/22

Answered by mnjuly1970 last updated on 16/Apr/22

        Ω = ∫_0 ^( ∞) (( x^( (1/4)) + 2x^(  (5/4)) +x^( (9/4)) )/((1+x^( 3) )^( 2) ))dx           =^(x^( 3) = t)  (1/3)∫_0 ^( ∞) ((t^( (1/(12))−(8/(12)))  + 2t^( (5/(12))−(8/(12))) + t^( (9/(12))−(8/(12))) )/((1 + t )^( 2) )) dt              = (1/3) ∫_0 ^( ∞) ((t^( ((−7)/(12))) +2t^( ((−1)/4)) + t^( ((−1)/(12)))  )/((1+ t )^( 2) ))dt              = (1/(3 )) ∫_0 ^( ∞)  ((t^( (5/(12)) −1) + 2t^( (3/4) −1) + t^( ((11)/(12))−1) )/((1 + t )^( 2) ))dt            = (1/3) { β ((5/(12)) , ((19)/(12))) +2β((3/4) , (5/4)) +β (((11)/(12)) , ((13)/(12)) }        = (1/3) { ((Γ((5/(12)) )Γ( ((19)/(12)))+2Γ((3/4))Γ((5/4))+Γ (((11)/(12)))Γ (((13)/(12)) ) )/([Γ(2)= 1 ]))}        = (1/3) { (7/(12)) (π/(sin(((5π)/(12))))) +(1/2) (π/(sin((π/4)))) +(1/(12)) (π/(sin((π/(12))))) }        = (1/3) { (7/(3 )) (π/( (√6) +(√2))) + (π/( (√2))) +(1/3) (π/( (√6) −(√2))) }        = (π/3) { ((7((√6) −(√2) ))/(12)) +(1/( (√2))) + (((√6) +(√2))/(12)) }        = (π/3) { ((8(√6) −6(√2) )/(12)) + (1/( (√2) )) }        = (π/3)(((8(√6))/(12)))= (2/3) ((√6)/3)π = (2/3)(√(2/3)) π                ∴ Ω = (√(4/9)) ((((4/9))))^(1/4)  π                    a − 1 = (4/9) ⇒ a = ((13)/9)       ✓

Ω=0x14+2x54+x94(1+x3)2dx=x3=t130t112812+2t512812+t912812(1+t)2dt=130t712+2t14+t112(1+t)2dt=130t5121+2t341+t11121(1+t)2dt=13{β(512,1912)+2β(34,54)+β(1112,1312}=13{Γ(512)Γ(1912)+2Γ(34)Γ(54)+Γ(1112)Γ(1312)[Γ(2)=1]}=13{712πsin(5π12)+12πsin(π4)+112πsin(π12)}=13{73π6+2+π2+13π62}=π3{7(62)12+12+6+212}=π3{866212+12}=π3(8612)=2363π=2323πΩ=49(49)4πa1=49a=139

Commented by safojontoshtemirov last updated on 16/Apr/22

very nice ��

Commented by Tawa11 last updated on 16/Apr/22

Great sir.

Greatsir.

Answered by Mathspace last updated on 17/Apr/22

Ψ=∫_0 ^∞  (x^(−(1/4)) /((x^2 −x+1)^2 ))dx ⇒  Ψ=∫_0 ^∞   (x^(−(1/4)) /((((x^3 +1)/(x+1)))^2 ))dx  =∫_0 ^∞  ((x^(−(1/4)) (x^2 +2x+1))/((1+x^3 )^2 ))dx  =∫_0 ^∞   ((x^(7/4) +2x^(3/4)  +x^(−(1/4)) )/((1+x^3 )^2 ))dx  let ϕ(a,b)=∫_0 ^∞   (x^(a−1) /(x^3 +b^3 ))dx ⇒  (∂ϕ/∂b)=−3b^2 ∫_0 ^∞  (x^(a−1) /((x^3 +b^3 )^2 ))dx ⇒  ∫_0 ^∞   (x^(a−1) /((x^3 +1)^2 ))dx=−(1/3)(∂ϕ/∂b)∣_(b=1)   ϕ(a,b)=_(x=bz)   ∫_0 ^∞   (((bz)^(a−1) )/(b^3 (1+z^3 )))b dz  =b^(a−3) ∫_0 ^∞   (z^(a−1) /(1+z^3 ))dz     (z^3 =t)  =b^(a−3) ∫_0 ^∞    (t^((a−1)/3) /(1+t))(1/3)t^((1/3)−1)  dt  =(b^(a−3) /3)∫_0 ^∞   (t^((a/3)−1) /(1+t))dt  =(b^(a−3) /3)×(π/(sin(((aπ)/3)))) ⇒  (∂ϕ/∂b)(a,b)=(((a−3)/3)b^(a−4) (π/(sin(((aπ)/3)))) ⇒  (∂ϕ/∂b)∣_(b=1) =((a−3)/3)×(π/(sin(((πa)/3))))  ⇒∫_0 ^∞ (x^(a−1) /((x^3 +1)^2 ))dx=((π(3−a))/(9sin(((πa)/3))))  ⇒∫_0 ^∞ (x^(7/4) /((1+x^3 )^2 ))dx   =∫_0 ^∞  (x^(((11)/4)−1) /((1+x^3 )^2 ))dx  =((π(3−((11)/4)))/(9sin(((11π)/(12)))))=...  ∫_0 ^∞   (x^(3/4) /((1+x^3 )^2 ))dx=∫_0 ^∞  (x^((7/4)−1) /((1+x^3 )^2 ))dx  =((π(3−(7/4)))/(9sin(((7π)/(12)))))=...

Ψ=0x14(x2x+1)2dxΨ=0x14(x3+1x+1)2dx=0x14(x2+2x+1)(1+x3)2dx=0x74+2x34+x14(1+x3)2dxletφ(a,b)=0xa1x3+b3dxφb=3b20xa1(x3+b3)2dx0xa1(x3+1)2dx=13φbb=1φ(a,b)=x=bz0(bz)a1b3(1+z3)bdz=ba30za11+z3dz(z3=t)=ba30ta131+t13t131dt=ba330ta311+tdt=ba33×πsin(aπ3)φb(a,b)=(a33ba4πsin(aπ3)φbb=1=a33×πsin(πa3)0xa1(x3+1)2dx=π(3a)9sin(πa3)0x74(1+x3)2dx=0x1141(1+x3)2dx=π(3114)9sin(11π12)=...0x34(1+x3)2dx=0x741(1+x3)2dx=π(374)9sin(7π12)=...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com