Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 168743 by mehdiAz last updated on 16/Apr/22

∫_0 ^∞ ((√t)/(1+t^2 ))dt  FAILED TO CALCULATE

$$\int_{\mathrm{0}} ^{\infty} \frac{\sqrt{{t}}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\mathrm{FAILED}\:\mathrm{TO}\:\mathrm{CALCULATE} \\ $$$$ \\ $$

Commented by GalaxyBills last updated on 17/Apr/22

∫_0 ^∞ ((√t)/(1+t^2 ))dt  FAILED TO CALCULATE  Solution  by Awudulai  🇬🇭  let t=u^2 →dt=2udu  ∫_0 ^∞ ((2u(√u^2 ))/(1+u^4 ))du→∫_0 ^∞ ((2u^2 )/(1+u^4 ))du  let z=u^4 →^(u=z^(1/4) ) dz=4u^3 ⇒du=(dz/(4u^3 ))  ∫_0 ^∞ ((2u^2 .u^(−3) )/(4(1+z)))dz→(1/2)∫_0 ^∞ (z^(−(1/4)) /((1+z)))dz  using ∫_0 ^∞ (x^(m−1) /((1+x)^(m+n) ))dx→Γ(m)Γ(n)  m=(3/4)  amd n=(1/4)  (1/2)Γ((3/4))Γ((1/4))→(1/2)((π/(sin((π/4)))))=((π(√2))/2)=((2π)/(2(√2)))=(π/( (√2)))  Kudos to my Mentors: Prempeh (Euclid)🇬🇭 and to Daniel (Small Einstein)🇳🇬

$$\int_{\mathrm{0}} ^{\infty} \frac{\sqrt{{t}}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\mathrm{FAILED}\:\mathrm{TO}\:\mathrm{CALCULATE} \\ $$$$\mathfrak{S}{olution}\:\:{by}\:{Awudulai} \\ $$🇬🇭 $${let}\:{t}={u}^{\mathrm{2}} \rightarrow{dt}=\mathrm{2}{udu} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}{u}\sqrt{{u}^{\mathrm{2}} }}{\mathrm{1}+{u}^{\mathrm{4}} }{du}\rightarrow\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{4}} }{du} \\ $$$${let}\:{z}={u}^{\mathrm{4}} \overset{{u}={z}^{\frac{\mathrm{1}}{\mathrm{4}}} } {\rightarrow}{dz}=\mathrm{4}{u}^{\mathrm{3}} \Rightarrow{du}=\frac{{dz}}{\mathrm{4}{u}^{\mathrm{3}} } \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}{u}^{\mathrm{2}} .{u}^{−\mathrm{3}} }{\mathrm{4}\left(\mathrm{1}+{z}\right)}{dz}\rightarrow\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{z}^{−\frac{\mathrm{1}}{\mathrm{4}}} }{\left(\mathrm{1}+{z}\right)}{dz} \\ $$$${using}\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{m}−\mathrm{1}} }{\left(\mathrm{1}+{x}\right)^{{m}+{n}} }{dx}\rightarrow\Gamma\left({m}\right)\Gamma\left({n}\right) \\ $$$${m}=\frac{\mathrm{3}}{\mathrm{4}}\:\:{amd}\:{n}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\rightarrow\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{4}}\right)}\right)=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{2}}=\frac{\mathrm{2}\pi}{\mathrm{2}\sqrt{\mathrm{2}}}=\frac{\pi}{\:\sqrt{\mathrm{2}}} \\ $$Kudos to my Mentors: Prempeh (Euclid)🇬🇭 and to Daniel (Small Einstein)🇳🇬

Answered by Mathspace last updated on 17/Apr/22

I=∫_0 ^∞  ((√t)/(1+t^2 ))dt  ((√t)=x) ⇒  I=∫_0 ^∞  (x/(1+x^4 ))(2x)dx  =2∫_0 ^∞   (x^2 /(1+x^4 ))dx      (x=z^(1/4) )  =2∫_0 ^∞   (z^(1/2) /(1+z))(1/4)z^((1/4)−1) dz  =(1/2)∫_0 ^∞  (z^((3/4)−1) /(1+z))dz=(1/2)×(π/(sin(((3π)/4))))  =(π/2).(1/(1/( (√2))))=((π(√2))/2)=(π/( (√2)))

$${I}=\int_{\mathrm{0}} ^{\infty} \:\frac{\sqrt{{t}}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:\left(\sqrt{{t}}={x}\right)\:\Rightarrow \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{4}} }\left(\mathrm{2}{x}\right){dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:\:\:\:\:\:\left({x}={z}^{\frac{\mathrm{1}}{\mathrm{4}}} \right) \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{z}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}+{z}}\frac{\mathrm{1}}{\mathrm{4}}{z}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} {dz} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{{z}^{\frac{\mathrm{3}}{\mathrm{4}}−\mathrm{1}} }{\mathrm{1}+{z}}{dz}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{4}}\right)} \\ $$$$=\frac{\pi}{\mathrm{2}}.\frac{\mathrm{1}}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{2}}=\frac{\pi}{\:\sqrt{\mathrm{2}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com