Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 168743 by mehdiAz last updated on 16/Apr/22

∫_0 ^∞ ((√t)/(1+t^2 ))dt  FAILED TO CALCULATE

0t1+t2dtFAILEDTOCALCULATE

Commented by GalaxyBills last updated on 17/Apr/22

∫_0 ^∞ ((√t)/(1+t^2 ))dt  FAILED TO CALCULATE  Solution  by Awudulai  🇬🇭  let t=u^2 →dt=2udu  ∫_0 ^∞ ((2u(√u^2 ))/(1+u^4 ))du→∫_0 ^∞ ((2u^2 )/(1+u^4 ))du  let z=u^4 →^(u=z^(1/4) ) dz=4u^3 ⇒du=(dz/(4u^3 ))  ∫_0 ^∞ ((2u^2 .u^(−3) )/(4(1+z)))dz→(1/2)∫_0 ^∞ (z^(−(1/4)) /((1+z)))dz  using ∫_0 ^∞ (x^(m−1) /((1+x)^(m+n) ))dx→Γ(m)Γ(n)  m=(3/4)  amd n=(1/4)  (1/2)Γ((3/4))Γ((1/4))→(1/2)((π/(sin((π/4)))))=((π(√2))/2)=((2π)/(2(√2)))=(π/( (√2)))  Kudos to my Mentors: Prempeh (Euclid)🇬🇭 and to Daniel (Small Einstein)🇳🇬

0t1+t2dtFAILEDTOCALCULATESolutionbyAwudulai🇬🇭 lett=u2dt=2udu02uu21+u4du02u21+u4duletz=u4u=z14dz=4u3du=dz4u302u2.u34(1+z)dz120z14(1+z)dzusing0xm1(1+x)m+ndxΓ(m)Γ(n)m=34amdn=1412Γ(34)Γ(14)12(πsin(π4))=π22=2π22=π2Kudos to my Mentors: Prempeh (Euclid)🇬🇭 and to Daniel (Small Einstein)🇳🇬

Answered by Mathspace last updated on 17/Apr/22

I=∫_0 ^∞  ((√t)/(1+t^2 ))dt  ((√t)=x) ⇒  I=∫_0 ^∞  (x/(1+x^4 ))(2x)dx  =2∫_0 ^∞   (x^2 /(1+x^4 ))dx      (x=z^(1/4) )  =2∫_0 ^∞   (z^(1/2) /(1+z))(1/4)z^((1/4)−1) dz  =(1/2)∫_0 ^∞  (z^((3/4)−1) /(1+z))dz=(1/2)×(π/(sin(((3π)/4))))  =(π/2).(1/(1/( (√2))))=((π(√2))/2)=(π/( (√2)))

I=0t1+t2dt(t=x)I=0x1+x4(2x)dx=20x21+x4dx(x=z14)=20z121+z14z141dz=120z3411+zdz=12×πsin(3π4)=π2.112=π22=π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com