All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 168744 by LEKOUMA last updated on 16/Apr/22
Resolve1)∫1+cosxsinxdx2)∫dx1+x+133)∫xtanxcos4xdx4)∫dx1+x+1+x
Answered by bobhans last updated on 17/Apr/22
(1)∫2cos12x2sin12xcos12xdx=22∫dxsin12x=2∫csc12xd(12x)=2ln∣csc12x−cot12x∣+c
(2)∫dx1+x+13;[x=t3−1]=∫3t2dt1+t=3∫(t+1)2−2t−11+tdt=3[∫(t+1)dt−∫2(t+1)−11+tdt]=3[(t+1)22−2t+ln∣1+t∣]+c=3[1+x+132−2x+13+ln∣1+x+13∣]+c
Answered by MJS_new last updated on 17/Apr/22
∫dx1+x+x+1=[t=x+x+1→dx=2xx+1tdt;x=(t2−1)24t2]=12∫(t−1)(t2+1)t3dt==12∫(1−1t+1t2−1t3)dt==t2−12lnt−12t+14t2==x+2x−xx+1−ln(x+x+1)2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com