Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 168762 by Dildora last updated on 17/Apr/22

Commented by cortano1 last updated on 17/Apr/22

 ∫ ((2sin (1/2)x cos (1/2)x)/(2cos (1/2)x(cos (1/2)x+sin (1/2)x))) dx   = ∫ ((sin (1/2)x)/(cos (1/2)x+sin (1/2)x)) dx   = ∫ ((2sin u)/(cos u+sin u)) du ; [(1/2)x=u ]  ((2sin u)/(cos u+sin u)) = A(((sin u+cos u)/(sin u+cos u)))+B(((d(sin u+cos u))/(sin u+cos u)))  ⇒2sin u= Asin u+Acos u+Bcos  u−Bsin u  ⇒2sin u=(A−B)sin u+(A+B)cos u    { ((A−B=2)),((A+B=0)) :} ⇒ { ((A=1)),((B=−1)) :}    I= ∫_0 ^( (π/4)) ((2sin u)/(sin u+cos u)) du = ∫_0 ^( (π/4)) du−∫_0 ^( (π/4)) ((d(sin u+cos u))/(sin u+cos u))   = (π/4)−[ ln ∣sin u+cos u∣ ]_( 0) ^(π/4)    = (π/4)−ln (√2)

2sin12xcos12x2cos12x(cos12x+sin12x)dx=sin12xcos12x+sin12xdx=2sinucosu+sinudu;[12x=u]2sinucosu+sinu=A(sinu+cosusinu+cosu)+B(d(sinu+cosu)sinu+cosu)2sinu=Asinu+Acosu+BcosuBsinu2sinu=(AB)sinu+(A+B)cosu{AB=2A+B=0{A=1B=1I=0π42sinusinu+cosudu=0π4du0π4d(sinu+cosu)sinu+cosu=π4[lnsinu+cosu]0π4=π4ln2

Commented by Dildora last updated on 17/Apr/22

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com