Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 168823 by Rasheed.Sindhi last updated on 18/Apr/22

Q#168480 reposted.  n^2 +n+109=x^2   x∈Z, n(∈Z^+ )=?

You can't use 'macro parameter character #' in math moden2+n+109=x2xZ,n(Z+)=?

Answered by Rasheed.Sindhi last updated on 18/Apr/22

n^2 +n+109=x^2   x∈Z, n(∈Z^+ )=?  There′s no harm to assume x as   non-negative because x^2  is anyway  non-negative.  n^2 +n+109−x^2 =0  n=((−1±(√(1−4(109−x^2 ))))/2)  n=((−1±(√(4x^2 −435)))/2)   ∵ n>0   ∴    n=((−1+(√(4x^2 −435)))/2)  ∵n∈Z^+   ∴4x^2 −435 { ((>1)),(( perfect square)) :}              x^2 >((436)/4)⇒x^2 ≥109⇒x≥11   determinant ((x,((√(4x^2 −435)) ),(n=((−1+(√(4x^2 −435)))/2))),((11),7,3),((23),(41),(20)),((37),(71),(35)),((109),(217),(108)),((...),(...),(...)))

n2+n+109=x2xZ,n(Z+)=?Theresnoharmtoassumexasnonnegativebecausex2isanywaynonnegative.n2+n+109x2=0n=1±14(109x2)2n=1±4x24352n>0n=1+4x24352nZ+4x2435{>1perfectsquarex2>4364x2109x11x4x2435n=1+4x243521173234120377135109217108.........

Answered by mindispower last updated on 18/Apr/22

⇔4n^2 +4n+436=(2x)^2   ⇔(2n+1)^2 +435=(2x)^2   ⇔(2x−2n−1)(2x+2n+1)=435  Solve for x∈Z_+   2x+2n+1>2x−2n−1,x>n  435=5.3.29  ⇔ { ((2x+2n+1=435)),((2x−2n−1=1)) :}  x=109,n=108   { ((2x+2n+1=87)),((2x−2n−1=5)) :}  x=23  n=20   { ((2x+2n+1=145)),((2x−2n−1=3)) :}  ⇒x=37,n=35   { ((2x+2n+1=29)),((2x−2n−1=15)) :}  x=11,n=3  S=(x,n)∈{(11,3);(23,20);(37,35);(109,108);(−11,3),  (−23,20);(−37,35);(−109,108)}

4n2+4n+436=(2x)2(2n+1)2+435=(2x)2(2x2n1)(2x+2n+1)=435SolveforxZ+2x+2n+1>2x2n1,x>n435=5.3.29{2x+2n+1=4352x2n1=1x=109,n=108{2x+2n+1=872x2n1=5x=23n=20{2x+2n+1=1452x2n1=3x=37,n=35{2x+2n+1=292x2n1=15x=11,n=3S=(x,n){(11,3);(23,20);(37,35);(109,108);(11,3),(23,20);(37,35);(109,108)}

Commented by Rasheed.Sindhi last updated on 18/Apr/22

∨ ∩i⊂∈ solution!

i⊂∈solution!

Commented by Rasheed.Sindhi last updated on 18/Apr/22

Thanks sir!

Thankssir!

Commented by mindispower last updated on 19/Apr/22

withe Pleasur Have a nice Day

withePleasurHaveaniceDay

Commented by Rasheed.Sindhi last updated on 19/Apr/22

,�� �� ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com