Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 168921 by Shrinava last updated on 21/Apr/22

Answered by mr W last updated on 22/Apr/22

Commented by Tawa11 last updated on 22/Apr/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by mr W last updated on 22/Apr/22

say BC=a, DE=b  let BD=c  c^2 =a^2 +b^2 −2ab cos (π−θ−(π/3))  c^2 =a^2 +b^2 +ab(cos θ−(√3) sin θ)  ((sin ∠ABD)/(AD))=((sin (θ+(π/3)))/(BD))  ⇒sin ∠ABD=((b sin (θ+(π/3)))/c)  cos ∠ABD=((a^2 +c^2 −b^2 )/(2ac))    AF^2 =a^2 +c^2 −2ac cos (∠ABD+(π/3))  AF^2 =a^2 +c^2 −ac (cos ∠ABD−(√3) sin ∠ABD)  AF^2 =a^2 +c^2 −ac cos ∠ABD+(√3) ab sin (θ+(π/3))]  AF^2 =a^2 +c^2 −ac×((a^2 +c^2 −b^2 )/(2ac))+(√3) ab sin (θ+(π/3))]  AF^2 =((a^2 +b^2 +c^2 )/2)+(√3) ab sin (θ+(π/3))  AF^2 =((a^2 +b^2 +a^2 +b^2 +ab(cos θ−(√3) sin θ))/2)+((√3)/2)ab (sin θ+(√3) cos θ)  AF^2 =a^2 +b^2 +2ab cos θ  AF=(√(a^2 +b^2 +2ab cos θ))  replace θ with −θ we get  AG=(√(a^2 +b^2 +2ab cos (−θ)))  AG=(√(a^2 +b^2 +2ab cos θ))  i.e. AF=AG  it can also be shown that F,A,G  are collinear.  FG=AF+AG=2(√(a^2 +b^2 +2ab cos θ))         ≤2(√(a^2 +b^2 +2ab))=2(a+b)  i.e. 2(BC+DE)≥FG

$${say}\:{BC}={a},\:{DE}={b} \\ $$$${let}\:{BD}={c} \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\left(\pi−\theta−\frac{\pi}{\mathrm{3}}\right) \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{ab}\left(\mathrm{cos}\:\theta−\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right) \\ $$$$\frac{\mathrm{sin}\:\angle{ABD}}{{AD}}=\frac{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)}{{BD}} \\ $$$$\Rightarrow\mathrm{sin}\:\angle{ABD}=\frac{{b}\:\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)}{{c}} \\ $$$$\mathrm{cos}\:\angle{ABD}=\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ac}} \\ $$$$ \\ $$$${AF}^{\mathrm{2}} ={a}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{ac}\:\mathrm{cos}\:\left(\angle{ABD}+\frac{\pi}{\mathrm{3}}\right) \\ $$$${AF}^{\mathrm{2}} ={a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{ac}\:\left(\mathrm{cos}\:\angle{ABD}−\sqrt{\mathrm{3}}\:\mathrm{sin}\:\angle{ABD}\right) \\ $$$$\left.{AF}^{\mathrm{2}} ={a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{ac}\:\mathrm{cos}\:\angle{ABD}+\sqrt{\mathrm{3}}\:{ab}\:\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)\right] \\ $$$$\left.{AF}^{\mathrm{2}} ={a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{ac}×\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ac}}+\sqrt{\mathrm{3}}\:{ab}\:\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)\right] \\ $$$${AF}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}}+\sqrt{\mathrm{3}}\:{ab}\:\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right) \\ $$$${AF}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{ab}\left(\mathrm{cos}\:\theta−\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right)}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{ab}\:\left(\mathrm{sin}\:\theta+\sqrt{\mathrm{3}}\:\mathrm{cos}\:\theta\right) \\ $$$${AF}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta \\ $$$${AF}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta} \\ $$$${replace}\:\theta\:{with}\:−\theta\:{we}\:{get} \\ $$$${AG}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\left(−\theta\right)} \\ $$$${AG}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta} \\ $$$${i}.{e}.\:{AF}={AG} \\ $$$${it}\:{can}\:{also}\:{be}\:{shown}\:{that}\:{F},{A},{G} \\ $$$${are}\:{collinear}. \\ $$$${FG}={AF}+{AG}=\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta} \\ $$$$\:\:\:\:\:\:\:\leqslant\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}}=\mathrm{2}\left({a}+{b}\right) \\ $$$${i}.{e}.\:\mathrm{2}\left({BC}+{DE}\right)\geqslant{FG} \\ $$

Commented by Shrinava last updated on 23/Apr/22

Cool dear sir

$$\mathrm{Cool}\:\mathrm{dear}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com