Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 168946 by bagjagugum123 last updated on 22/Apr/22

Commented by bagjagugum123 last updated on 22/Apr/22

Prove that : w=(√((x+y+z)^2 −4xy))

Provethat:w=(x+y+z)24xy

Answered by infinityaction last updated on 22/Apr/22

Commented by bagjagugum123 last updated on 22/Apr/22

Very nice, thank you Sir

Verynice,thankyouSir

Answered by som(math1967) last updated on 22/Apr/22

If figure is square  let side =l  then z=(1/2)(((l^2 −2x)/l))(((l^2 −2y)/l))   2l^2 z=l^4 −2l^2 (x+y)+4xy  ⇒l^4 −2l^2 (x+y+z)+4xy=0   l^2 =((2(x+y+z)+(√(4(x+y+z)^2 −16xy)))/2)  l^2 =(x+y+z)+(√((x+y+z)^2 −4xy))  x+y+z+w                 =(x+y+z)+(√((x+y+z)^2 −4xy))  ∴w=(√((x+y+z)^2 −4xy))

Iffigureissquareletside=lthenz=12(l22xl)(l22yl)2l2z=l42l2(x+y)+4xyl42l2(x+y+z)+4xy=0l2=2(x+y+z)+4(x+y+z)216xy2l2=(x+y+z)+(x+y+z)24xyx+y+z+w=(x+y+z)+(x+y+z)24xyw=(x+y+z)24xy

Terms of Service

Privacy Policy

Contact: info@tinkutara.com