All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 168966 by cortano1 last updated on 22/Apr/22
limx→0∫0x(∫0u2tan−1(1+t)dt)dtx−xcosx=?
Answered by bobhans last updated on 22/Apr/22
limx→0∫0x(∫0u2tan−1(1+t)dt)dtx−xcosx=limx→0∫0x2tan−1(1+t)dt1−(cosx−xsinx)=limx→0∫0x2tan−1(1+t)dt1+xsinx−cosx=limx→02xtan−1(1+x2)sinx+xcosx+sinx=π4.limx→02x2sinx+xcosx=π2limx→012sinxx+cosx=π2.13=π6
Answered by qaz last updated on 22/Apr/22
arctan(1+t)=arctan1+arctant2+t=π4+arctan(1−11+t2)=π4+arctan[1−(1−t2+...)]=π4+o(1)........(t→0)⇒limx→0∫0x(∫0u2tan−1(1+t)dt)dtx−xcosx=limx→0∫0x∫0u2[π4+o(1)]dtdu12x3+o(x3)=limx→0∫0x[π4u2+o(u2)]du12x3+o(x3)=limx→0π12x3+o(x3)12x3+o(x3)=π6
Terms of Service
Privacy Policy
Contact: info@tinkutara.com