Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 168966 by cortano1 last updated on 22/Apr/22

     lim_(x→0)  ((∫_0 ^( x)  (∫_0 ^( u^2 ) tan^(−1) (1+t)dt)dt )/(x−x cos x)) =?

limx00x(0u2tan1(1+t)dt)dtxxcosx=?

Answered by bobhans last updated on 22/Apr/22

  lim_(x→0)  ((∫_0 ^x (∫_0 ^u^2  tan^(−1) (1+t)dt)dt)/(x−xcos x))   = lim_(x→0)  ((∫_0 ^x^2  tan^(−1) (1+t)dt)/(1−(cos x−xsin x)))=lim_(x→0)  ((∫_0 ^x^2  tan^(−1) (1+t)dt)/(1+xsin x−cos x))   = lim_(x→0)  ((2x tan^(−1) (1+x^2 ))/(sin x+x cos x+sin x))  = (π/4).lim_(x→0)  ((2x)/(2sin x+xcos x)) = (π/2) lim_(x→0)   (1/(((2sin x)/x) +cos x))  = (π/2).(1/3) = (π/6)

limx00x(0u2tan1(1+t)dt)dtxxcosx=limx00x2tan1(1+t)dt1(cosxxsinx)=limx00x2tan1(1+t)dt1+xsinxcosx=limx02xtan1(1+x2)sinx+xcosx+sinx=π4.limx02x2sinx+xcosx=π2limx012sinxx+cosx=π2.13=π6

Answered by qaz last updated on 22/Apr/22

arctan (1+t)=arctan 1+arctan (t/(2+t))=(π/4)+arctan (1−(1/(1+(t/2))))   =(π/4)+arctan[1−(1−(t/2)+...)]=(π/4)+o(1)........(t→0)  ⇒  lim _(x→0) ((∫_0 ^( x)  (∫_0 ^( u^2 ) tan^(−1) (1+t)dt)dt )/(x−x cos x))   =lim_(x→0) ((∫_0 ^x ∫_0 ^u^2  [(π/4)+o(1)]dtdu)/((1/2)x^3 +o(x^3 )))  =lim_(x→0) ((∫_0 ^x [(π/4)u^2 +o(u^2 )]du)/((1/2)x^3 +o(x^3 )))  =lim_(x→0) (((π/(12))x^3 +o(x^3 ))/((1/2)x^3 +o(x^3 )))  =(π/6)

arctan(1+t)=arctan1+arctant2+t=π4+arctan(111+t2)=π4+arctan[1(1t2+...)]=π4+o(1)........(t0)limx00x(0u2tan1(1+t)dt)dtxxcosx=limx00x0u2[π4+o(1)]dtdu12x3+o(x3)=limx00x[π4u2+o(u2)]du12x3+o(x3)=limx0π12x3+o(x3)12x3+o(x3)=π6

Terms of Service

Privacy Policy

Contact: info@tinkutara.com