Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 169004 by mathlove last updated on 23/Apr/22

lim_(x→(π/2)) (((sinx−1)/(x−(π/2))))=?

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\left(\frac{{sinx}−\mathrm{1}}{{x}−\frac{\pi}{\mathrm{2}}}\right)=? \\ $$

Commented by infinityaction last updated on 23/Apr/22

           (let)p        =      lim_(x→(π/2))  (((sin x−sin (π/2))/(x−(π/2))))               p    =       lim_(x→(π/2))  {((2cos (((x+π/2)/2))sin (((x−π/2)/2)))/(2(((x−π/2)/2))))}            p    =     cos (π/2)            p      =    0

$$\:\:\:\:\:\:\:\:\:\:\:\left({let}\right){p}\:\:\:\:\:\:\:\:=\:\:\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\left(\frac{\mathrm{sin}\:{x}−\mathrm{sin}\:\frac{\pi}{\mathrm{2}}}{{x}−\frac{\pi}{\mathrm{2}}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{p}\:\:\:\:=\:\:\:\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\left\{\frac{\mathrm{2cos}\:\left(\frac{{x}+\pi/\mathrm{2}}{\mathrm{2}}\right)\mathrm{sin}\:\left(\frac{{x}−\pi/\mathrm{2}}{\mathrm{2}}\right)}{\mathrm{2}\left(\frac{{x}−\pi/\mathrm{2}}{\mathrm{2}}\right)}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:{p}\:\:\:\:=\:\:\:\:\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{p}\:\:\:\:\:\:=\:\:\:\:\mathrm{0} \\ $$$$ \\ $$

Commented by mathlove last updated on 23/Apr/22

sir  sinp+sinq=2cos((p+q)/2)∙sin((p−q)/2)

$${sir} \\ $$$${sinp}+{sinq}=\mathrm{2}{cos}\frac{{p}+{q}}{\mathrm{2}}\centerdot{sin}\frac{{p}−{q}}{\mathrm{2}} \\ $$

Commented by mr W last updated on 23/Apr/22

lim_(x→(π/2)) (((sinx−1)/(x−(π/2))))  =lim_(x→(π/2)) (((sinx−sin (π/2))/(x−(π/2))))  =(sin x)′∣_(x=(π/2))   =(cos x)∣_(x=(π/2))   =0

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\left(\frac{{sinx}−\mathrm{1}}{{x}−\frac{\pi}{\mathrm{2}}}\right) \\ $$$$=\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\left(\frac{{sinx}−\mathrm{sin}\:\frac{\pi}{\mathrm{2}}}{{x}−\frac{\pi}{\mathrm{2}}}\right) \\ $$$$=\left(\mathrm{sin}\:{x}\right)'\mid_{{x}=\frac{\pi}{\mathrm{2}}} \\ $$$$=\left(\mathrm{cos}\:{x}\right)\mid_{{x}=\frac{\pi}{\mathrm{2}}} \\ $$$$=\mathrm{0} \\ $$

Answered by qaz last updated on 23/Apr/22

lim_(x→(π/2)) ((sin x−1)/(x−(π/2)))=lim_(x→(π/2)−(π/2)) ((sin (x+(π/2))−1)/((x+(π/2))−(π/2)))=lim_(x→0) ((cos x−1)/x)=lim_(x→0) ((−(1/2)x^2 )/x)=0

$$\underset{\mathrm{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{1}}{\mathrm{x}−\frac{\pi}{\mathrm{2}}}=\underset{\mathrm{x}\rightarrow\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{2}}\right)−\mathrm{1}}{\left(\mathrm{x}+\frac{\pi}{\mathrm{2}}\right)−\frac{\pi}{\mathrm{2}}}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:\mathrm{x}−\mathrm{1}}{\mathrm{x}}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} }{\mathrm{x}}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com