Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 169050 by Mastermind last updated on 23/Apr/22

Solve the ODE  y′ + xy = x^2 , with y(0)=2    Mastermind

SolvetheODEy+xy=x2,withy(0)=2Mastermind

Answered by Mathspace last updated on 23/Apr/22

h→y^′ =−xy ⇒(y^′ /y)=−x ⇒  ln∣y∣=−(x^2 /2)+λ ⇒y=k e^(−(x^2 /2))   (mvc)→y^′ =k^′  e^(−(x^2 /2)) −kx e^(−(x^2 /2))   (e)⇒k^(′ ) e^(−(x^2 /2)) −kx e^(−(x^2 /2)) +xk e^(−(x^2 /2)) =x^2   ⇒k^′ =x^2  e^(x^2 /2)  ⇒k=∫_0 ^x  t^2  e^(t^2 /2)  dt +λ  y(x)=(λ+∫_0 ^x  t^2  e^(t^2 /2)  dt)e^(−(x^2 /2))   y(0)=2 ⇒λ=2 ⇒  y(x)=2e^(−(x^2 /2))  +e^(−(x^2 /2))  ∫_0 ^x  t^2  e^(t^2 /2)  dt

hy=xyyy=xlny∣=x22+λy=kex22(mvc)y=kex22kxex22(e)kex22kxex22+xkex22=x2k=x2ex22k=0xt2et22dt+λy(x)=(λ+0xt2et22dt)ex22y(0)=2λ=2y(x)=2ex22+ex220xt2et22dt

Commented by Mastermind last updated on 24/Apr/22

I did not understand this sir,  could you solve it in another way

Ididnotunderstandthissir,couldyousolveitinanotherway

Terms of Service

Privacy Policy

Contact: info@tinkutara.com