Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 169051 by Mastermind last updated on 23/Apr/22

Solve the ODE  (x^2 −2)y′ + xy = 0, with y(1)=1    Mastermind

$${Solve}\:{the}\:{ODE} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{2}\right){y}'\:+\:{xy}\:=\:\mathrm{0},\:{with}\:{y}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$ \\ $$$${Mastermind} \\ $$

Commented by haladu last updated on 23/Apr/22

      y′ ( x^2 −2 )  =  −xy        (dy/y)  =  −((x dx)/(x^2  −2))    ∫ (dy/y) =  − (1/2) ∫ ((2x)/(x^2  −2))        ln (y)  =  −(1/2) ln (x^2  −2 ) + C     y = x =1     ln (1)  =  −(1/2) ln  (1^2 −2 )  + C    0  =  −(1/2)ln (−1)  + C     C  =  (1/2)ln (−1)     ln (y) = − (1/2)ln (x^2  −2 )  + (1/2)ln (−1)    −2ln (y) =  ln ( x^2 −2 )−ln (−1)         (1/y^2 ) =  ((x^2 −2)/(−1))      y^2   =  2  −x^2

$$\:\: \\ $$$$\:\:\boldsymbol{\mathrm{y}}'\:\left(\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}\:\right)\:\:=\:\:−\boldsymbol{\mathrm{xy}}\:\: \\ $$$$\:\:\:\:\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{y}}}\:\:=\:\:−\frac{\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\mathrm{2}} \\ $$$$\:\:\int\:\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{y}}}\:=\:\:−\:\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\frac{\mathrm{2}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\mathrm{2}} \\ $$$$\:\: \\ $$$$\:\:\mathrm{ln}\:\left(\boldsymbol{\mathrm{y}}\right)\:\:=\:\:−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{ln}\:\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\mathrm{2}\:\right)\:+\:\boldsymbol{\mathrm{C}} \\ $$$$\:\:\:\boldsymbol{\mathrm{y}}\:=\:\boldsymbol{\mathrm{x}}\:=\mathrm{1}\:\: \\ $$$$\:\mathrm{ln}\:\left(\mathrm{1}\right)\:\:=\:\:−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{ln}\:\:\left(\mathrm{1}^{\mathrm{2}} −\mathrm{2}\:\right)\:\:+\:\boldsymbol{\mathrm{C}} \\ $$$$\:\:\mathrm{0}\:\:=\:\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(−\mathrm{1}\right)\:\:+\:\boldsymbol{\mathrm{C}}\: \\ $$$$\:\:\boldsymbol{\mathrm{C}}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(−\mathrm{1}\right) \\ $$$$\:\:\:\mathrm{ln}\:\left(\boldsymbol{\mathrm{y}}\right)\:=\:−\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\mathrm{2}\:\right)\:\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(−\mathrm{1}\right) \\ $$$$\:\:−\mathrm{2ln}\:\left(\boldsymbol{\mathrm{y}}\right)\:=\:\:\mathrm{ln}\:\left(\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}\:\right)−\mathrm{ln}\:\left(−\mathrm{1}\right) \\ $$$$\:\:\: \\ $$$$\:\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}^{\mathrm{2}} }\:=\:\:\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}}{−\mathrm{1}}\:\: \\ $$$$\:\:\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:\:=\:\:\mathrm{2}\:\:−\boldsymbol{\mathrm{x}}^{\mathrm{2}} \: \\ $$$$ \\ $$

Commented by Mastermind last updated on 23/Apr/22

Could you please recheck your solution?

$${Could}\:{you}\:{please}\:{recheck}\:{your}\:{solution}? \\ $$

Commented by haladu last updated on 23/Apr/22

 yes i was in hurry becuse it was time for sallat.

$$\:\boldsymbol{{yes}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{was}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{hurry}}\:\boldsymbol{\mathrm{becuse}}\:\boldsymbol{\mathrm{it}}\:\boldsymbol{\mathrm{was}}\:\boldsymbol{\mathrm{time}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{sallat}}. \\ $$

Commented by Mastermind last updated on 24/Apr/22

Okay i understand

$${Okay}\:{i}\:{understand} \\ $$

Answered by Mathspace last updated on 23/Apr/22

(x^2 −2)y^′ +xy=0 ⇒(x^2 −2)y^′ =−xy ⇒  (y^′ /y)=−(x/(x^2 −2)) ⇒ln∣y∣=−(1/2)ln∣x^2 −2∣ +c  ⇒y=(k/( (√(∣x^2 −2∣))))  solution on w={x/x^2 −2<0}  ⇒y=(k/( (√(2−x^2 ))))=k(2−x^2 )^(−(1/2))   ⇒y^′ =k^′ (2−x^2 )^(−(1/2)) +k((1/2)2x)(x^2 −2)^(−(3/2))   =k^′ (2−x^2 )^(−(1/2)) +xk(2−x^2 )^(−(3/2))   (e)⇒(x^2 −2)k^′ (2−x^2 )^(−(1/2))   −xk(2−x^2 )^(−(1/2))  +xk(2−x^2 )^(−(1/2))   =0⇒k^′ =0 ⇒k=λ ⇒  y(x)=(λ/( (√(2−x^2 ))))  y(1)=1 ⇒λ=1 ⇒y(x)=(1/( (√(2−x^2 ))))

$$\left({x}^{\mathrm{2}} −\mathrm{2}\right){y}^{'} +{xy}=\mathrm{0}\:\Rightarrow\left({x}^{\mathrm{2}} −\mathrm{2}\right){y}^{'} =−{xy}\:\Rightarrow \\ $$$$\frac{{y}^{'} }{{y}}=−\frac{{x}}{{x}^{\mathrm{2}} −\mathrm{2}}\:\Rightarrow{ln}\mid{y}\mid=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{x}^{\mathrm{2}} −\mathrm{2}\mid\:+{c} \\ $$$$\Rightarrow{y}=\frac{{k}}{\:\sqrt{\mid{x}^{\mathrm{2}} −\mathrm{2}\mid}} \\ $$$${solution}\:{on}\:{w}=\left\{{x}/{x}^{\mathrm{2}} −\mathrm{2}<\mathrm{0}\right\} \\ $$$$\Rightarrow{y}=\frac{{k}}{\:\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}={k}\left(\mathrm{2}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\Rightarrow{y}^{'} ={k}^{'} \left(\mathrm{2}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} +{k}\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{2}{x}\right)\left({x}^{\mathrm{2}} −\mathrm{2}\right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$={k}^{'} \left(\mathrm{2}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} +{xk}\left(\mathrm{2}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$\left({e}\right)\Rightarrow\left({x}^{\mathrm{2}} −\mathrm{2}\right){k}^{'} \left(\mathrm{2}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$−{xk}\left(\mathrm{2}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:+{xk}\left(\mathrm{2}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=\mathrm{0}\Rightarrow{k}^{'} =\mathrm{0}\:\Rightarrow{k}=\lambda\:\Rightarrow \\ $$$${y}\left({x}\right)=\frac{\lambda}{\:\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }} \\ $$$${y}\left(\mathrm{1}\right)=\mathrm{1}\:\Rightarrow\lambda=\mathrm{1}\:\Rightarrow{y}\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }} \\ $$

Commented by Mastermind last updated on 24/Apr/22

Sir, i think answer is y=(i/( (√(x^2 −2))))

$${Sir},\:{i}\:{think}\:{answer}\:{is}\:{y}=\frac{{i}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{2}}} \\ $$

Commented by Mathspace last updated on 24/Apr/22

no

$${no} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com