Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 169052 by cortano1 last updated on 23/Apr/22

       lim_(x→0)  (((√((1+2x)/(1−3x))) (((1+x)/(1−x)))^(1/3)  (((1+4x)/(1+3x)))^(1/4)  −1)/(2x)) =?

$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\frac{\mathrm{1}+\mathrm{2}{x}}{\mathrm{1}−\mathrm{3}{x}}}\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}\:\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}+\mathrm{4}{x}}{\mathrm{1}+\mathrm{3}{x}}}\:−\mathrm{1}}{\mathrm{2}{x}}\:=? \\ $$

Commented by infinityaction last updated on 23/Apr/22

((41)/(24))???

$$\frac{\mathrm{41}}{\mathrm{24}}??? \\ $$

Commented by cortano1 last updated on 23/Apr/22

✓

$$\checkmark \\ $$

Commented by infinityaction last updated on 27/Apr/22

use binomial expansions  binomial theorem for rational index  (1+x)^n  = 1+nx+...    where −1<x<1   p(let)= lim_(x→0)  (1/(2x)){(((1+x)(1+(x/3))(1+x))/((1−((3x)/2))(1−(x/3))(1+((3x)/4))))−1}    p=lim_(x→0)  (1/(2x)){(((1+x)^2 (3+x)/3)/((2−3x)(3−x)(4+3x)/24))−1}   p=lim_(x→0)  (1/(2x)){((8(1+x)^2 (3+x))/((2−3x)(3−x)(4+3x)))−1}     p=lim_(x→0)   (1/(2x)){((8(1+x)^2 (3+x)−(2−3x)(3−x)(4+3x))/((2−3x)(3−x)(4+3x)))}   p=lim_(x→0)  (1/(2x)){((8x^3 +40x^2 +56x+24−9x^3 +21x^2 +26x−24)/((2−3x)(3−x)(4+3x)))}    p=lim_(x→0)  (1/(2x)){((−x^3 +61x^2 +82x)/((2−3x)(3−x)(4+3x)))}    p=lim_(x→0)  (1/2){((−x^2 +61x+82)/((2−3x)(3−x)(4+3x)))}      p=  (1/2)×((82)/(24))      p = ((41)/(24))

$${use}\:{binomial}\:{expansions} \\ $$$${binomial}\:{theorem}\:{for}\:{rational}\:{index} \\ $$$$\left(\mathrm{1}+{x}\right)^{{n}} \:=\:\mathrm{1}+{nx}+...\:\:\:\:{where}\:−\mathrm{1}<{x}<\mathrm{1} \\ $$$$\:\boldsymbol{{p}}\left(\boldsymbol{{let}}\right)=\:\underset{{x}\rightarrow\mathrm{0}} {\boldsymbol{\mathrm{lim}}}\:\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{x}}}\left\{\frac{\left(\mathrm{1}+\boldsymbol{{x}}\right)\left(\mathrm{1}+\frac{\boldsymbol{{x}}}{\mathrm{3}}\right)\left(\mathrm{1}+\boldsymbol{{x}}\right)}{\left(\mathrm{1}−\frac{\mathrm{3}\boldsymbol{{x}}}{\mathrm{2}}\right)\left(\mathrm{1}−\frac{\boldsymbol{{x}}}{\mathrm{3}}\right)\left(\mathrm{1}+\frac{\mathrm{3}\boldsymbol{{x}}}{\mathrm{4}}\right)}−\mathrm{1}\right\} \\ $$$$\:\:{p}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2}{x}}\left\{\frac{\left(\mathrm{1}+\boldsymbol{{x}}\right)^{\mathrm{2}} \left(\mathrm{3}+\boldsymbol{{x}}\right)/\mathrm{3}}{\left(\mathrm{2}−\mathrm{3}\boldsymbol{{x}}\right)\left(\mathrm{3}−\boldsymbol{{x}}\right)\left(\mathrm{4}+\mathrm{3}\boldsymbol{{x}}\right)/\mathrm{24}}−\mathrm{1}\right\} \\ $$$$\:\boldsymbol{{p}}=\underset{{x}\rightarrow\mathrm{0}} {\boldsymbol{\mathrm{lim}}}\:\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{x}}}\left\{\frac{\mathrm{8}\left(\mathrm{1}+\boldsymbol{{x}}\right)^{\mathrm{2}} \left(\mathrm{3}+\boldsymbol{{x}}\right)}{\left(\mathrm{2}−\mathrm{3}\boldsymbol{{x}}\right)\left(\mathrm{3}−\boldsymbol{{x}}\right)\left(\mathrm{4}+\mathrm{3}\boldsymbol{{x}}\right)}−\mathrm{1}\right\} \\ $$$$\:\:\:{p}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{1}}{\mathrm{2}{x}}\left\{\frac{\mathrm{8}\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \left(\mathrm{3}+{x}\right)−\left(\mathrm{2}−\mathrm{3}{x}\right)\left(\mathrm{3}−{x}\right)\left(\mathrm{4}+\mathrm{3}{x}\right)}{\left(\mathrm{2}−\mathrm{3}{x}\right)\left(\mathrm{3}−{x}\right)\left(\mathrm{4}+\mathrm{3}{x}\right)}\right\} \\ $$$$\:{p}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2}{x}}\left\{\frac{\mathrm{8}{x}^{\mathrm{3}} +\mathrm{40}{x}^{\mathrm{2}} +\mathrm{56}{x}+\mathrm{24}−\mathrm{9}{x}^{\mathrm{3}} +\mathrm{21}{x}^{\mathrm{2}} +\mathrm{26}{x}−\mathrm{24}}{\left(\mathrm{2}−\mathrm{3}{x}\right)\left(\mathrm{3}−{x}\right)\left(\mathrm{4}+\mathrm{3}{x}\right)}\right\} \\ $$$$\:\:\boldsymbol{{p}}=\underset{{x}\rightarrow\mathrm{0}} {\boldsymbol{\mathrm{lim}}}\:\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{x}}}\left\{\frac{−\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{61}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{82}\boldsymbol{{x}}}{\left(\mathrm{2}−\mathrm{3}\boldsymbol{{x}}\right)\left(\mathrm{3}−\boldsymbol{{x}}\right)\left(\mathrm{4}+\mathrm{3}\boldsymbol{{x}}\right)}\right\} \\ $$$$\:\:\boldsymbol{{p}}=\underset{{x}\rightarrow\mathrm{0}} {\boldsymbol{\mathrm{lim}}}\:\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{−\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{61}\boldsymbol{{x}}+\mathrm{82}}{\left(\mathrm{2}−\mathrm{3}\boldsymbol{{x}}\right)\left(\mathrm{3}−\boldsymbol{{x}}\right)\left(\mathrm{4}+\mathrm{3}\boldsymbol{{x}}\right)}\right\} \\ $$$$\:\:\:\:{p}=\:\:\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{82}}{\mathrm{24}} \\ $$$$\:\:\:\:{p}\:=\:\frac{\mathrm{41}}{\mathrm{24}} \\ $$$$ \\ $$

Answered by qaz last updated on 24/Apr/22

lim_(x→0) (((√((1+2x)/(1−3x))) (((1+x)/(1−x)))^(1/3)  (((1+4x)/(1+3x)))^(1/4)  −1)/(2x))  =lim_(x→0) (((1/2)ln((1+2x)/(1−3x))+(1/3)ln((1+x)/(1−x))+(1/4)ln((1+4x)/(1+3x)))/(2x))  =lim_(x→0) (((1/2)∙5x+(1/3)∙2x+(1/4)∙x)/(2x))  =((41)/(24))

$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\frac{\mathrm{1}+\mathrm{2}{x}}{\mathrm{1}−\mathrm{3}{x}}}\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}\:\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}+\mathrm{4}{x}}{\mathrm{1}+\mathrm{3}{x}}}\:−\mathrm{1}}{\mathrm{2}{x}} \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\frac{\mathrm{1}+\mathrm{2x}}{\mathrm{1}−\mathrm{3x}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\frac{\mathrm{1}+\mathrm{x}}{\mathrm{1}−\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\frac{\mathrm{1}+\mathrm{4x}}{\mathrm{1}+\mathrm{3x}}}{\mathrm{2x}} \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{\mathrm{2}}\centerdot\mathrm{5x}+\frac{\mathrm{1}}{\mathrm{3}}\centerdot\mathrm{2x}+\frac{\mathrm{1}}{\mathrm{4}}\centerdot\mathrm{x}}{\mathrm{2x}} \\ $$$$=\frac{\mathrm{41}}{\mathrm{24}} \\ $$

Commented by infinityaction last updated on 24/Apr/22

please explain your second step

$${please}\:{explain}\:{your}\:{second}\:{step} \\ $$

Commented by qaz last updated on 24/Apr/22

x→0,  (√((1+2x)/(1−3x)))(((1+x)/(1−x)))^(1/3) (((1+4x)/(1+3x)))^(1/4) −1∼ln((√((1+2x)/(1−3x)))(((1+x)/(1−x)))^(1/3) (((1+4x)/(1+3x)))^(1/4) −1+1)=ln((√((1+2x)/(1−3x)))(((1+x)/(1−x)))^(1/3) (((1+4x)/(1+3x)))^(1/4) )

$$\mathrm{x}\rightarrow\mathrm{0}, \\ $$$$\sqrt{\frac{\mathrm{1}+\mathrm{2x}}{\mathrm{1}−\mathrm{3x}}}\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}+\mathrm{x}}{\mathrm{1}−\mathrm{x}}}\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}+\mathrm{4x}}{\mathrm{1}+\mathrm{3x}}}−\mathrm{1}\sim\mathrm{ln}\left(\sqrt{\frac{\mathrm{1}+\mathrm{2x}}{\mathrm{1}−\mathrm{3x}}}\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}+\mathrm{x}}{\mathrm{1}−\mathrm{x}}}\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}+\mathrm{4x}}{\mathrm{1}+\mathrm{3x}}}−\mathrm{1}+\mathrm{1}\right)=\mathrm{ln}\left(\sqrt{\frac{\mathrm{1}+\mathrm{2x}}{\mathrm{1}−\mathrm{3x}}}\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}+\mathrm{x}}{\mathrm{1}−\mathrm{x}}}\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}+\mathrm{4x}}{\mathrm{1}+\mathrm{3x}}}\right) \\ $$

Commented by qaz last updated on 24/Apr/22

x→0,ln(1+x)∼x  ⇒x→0,x∼ln(1+x) reverse equivalence.

$$\mathrm{x}\rightarrow\mathrm{0},\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\sim\mathrm{x} \\ $$$$\Rightarrow\mathrm{x}\rightarrow\mathrm{0},\mathrm{x}\sim\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\:\mathrm{reverse}\:\mathrm{equivalence}. \\ $$

Commented by infinityaction last updated on 24/Apr/22

how did become ln in this equation(1 step)

$${how}\:{did}\:{become}\:{ln}\:{in}\:{this}\:{equation}\left(\mathrm{1}\:{step}\right) \\ $$$$ \\ $$

Commented by infinityaction last updated on 24/Apr/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com