Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 169073 by MikeH last updated on 23/Apr/22

∫((3x)/((1−4x−2x^2 )^2 ))dx

$$\int\frac{\mathrm{3}{x}}{\left(\mathrm{1}−\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$

Answered by MJS_new last updated on 24/Apr/22

∫((3x)/((2x^2 +4x−1)^2 ))dx=       [Ostrogradski′s Method]  =((2x−1)/(4(2x^2 +4x−1)))+(1/2)∫(dx/(2x^2 +4x−1))=  =((2x−1)/(4(2x^2 +4x−1)))+((√6)/(12))∫((1/(2x+2−(√6)))−(1/(2x+2+(√6))))dx=  =((2x−1)/(4(2x^2 +4x−1)))+((√6)/(24))ln ∣((2x+2−(√6))/(2x+2+(√6)))∣ +C

$$\int\frac{\mathrm{3}{x}}{\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}\right)^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\right] \\ $$$$=\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{4}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}}= \\ $$$$=\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{4}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}\right)}+\frac{\sqrt{\mathrm{6}}}{\mathrm{12}}\int\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}−\sqrt{\mathrm{6}}}−\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}+\sqrt{\mathrm{6}}}\right){dx}= \\ $$$$=\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{4}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}\right)}+\frac{\sqrt{\mathrm{6}}}{\mathrm{24}}\mathrm{ln}\:\mid\frac{\mathrm{2}{x}+\mathrm{2}−\sqrt{\mathrm{6}}}{\mathrm{2}{x}+\mathrm{2}+\sqrt{\mathrm{6}}}\mid\:+{C} \\ $$

Commented by MikeH last updated on 24/Apr/22

thanks sir.   but sir can you use  another method to solve  the question. please

$$\mathrm{thanks}\:\mathrm{sir}.\: \\ $$$$\mathrm{but}\:\mathrm{sir}\:\mathrm{can}\:\mathrm{you}\:\mathrm{use} \\ $$$$\mathrm{another}\:\mathrm{method}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\mathrm{the}\:\mathrm{question}.\:\mathrm{please} \\ $$

Commented by SLVR last updated on 25/Apr/22

Dear sir MJS...kindly give the  procedure of Ostrogradski

$${Dear}\:{sir}\:{MJS}...{kindly}\:{give}\:{the} \\ $$$${procedure}\:{of}\:{Ostrogradski} \\ $$

Answered by MJS_new last updated on 24/Apr/22

3∫(x/((2x^2 +4x−1)^2 ))dx=       [t=(((√6)(x+1))/3) → dx=((√6)/2)dt]  =(1/6)∫((3t−(√6))/((t^2 −1)^2 ))dt=  =−((√6)/(24))∫(dt/(t+1))−((3+(√6))/(24))∫(dt/((t+1)^2 ))+((√6)/(24))∫(dt/(t−1))+((3−(√6))/(24))∫(dt/((t^2 −1)^2 ))=  =−((√6)/(24))ln (t+1) +((3+(√6))/(24(t+1)))+((√6)/(24))ln (t−1) −((3−(√6))/(24(t−1)))=  =((√6)/(24))ln ((t−1)/(t+1)) +(((√6)t−3)/(12(t^2 −1)))=  =((√6)/(24))ln ∣((2x+2−(√6))/(2x+2+(√6)))∣ +((2x−1)/(4(2x^2 +4x−1)))+C

$$\mathrm{3}\int\frac{{x}}{\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}\right)^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\sqrt{\mathrm{6}}\left({x}+\mathrm{1}\right)}{\mathrm{3}}\:\rightarrow\:{dx}=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}{dt}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\int\frac{\mathrm{3}{t}−\sqrt{\mathrm{6}}}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{dt}= \\ $$$$=−\frac{\sqrt{\mathrm{6}}}{\mathrm{24}}\int\frac{{dt}}{{t}+\mathrm{1}}−\frac{\mathrm{3}+\sqrt{\mathrm{6}}}{\mathrm{24}}\int\frac{{dt}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\sqrt{\mathrm{6}}}{\mathrm{24}}\int\frac{{dt}}{{t}−\mathrm{1}}+\frac{\mathrm{3}−\sqrt{\mathrm{6}}}{\mathrm{24}}\int\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }= \\ $$$$=−\frac{\sqrt{\mathrm{6}}}{\mathrm{24}}\mathrm{ln}\:\left({t}+\mathrm{1}\right)\:+\frac{\mathrm{3}+\sqrt{\mathrm{6}}}{\mathrm{24}\left({t}+\mathrm{1}\right)}+\frac{\sqrt{\mathrm{6}}}{\mathrm{24}}\mathrm{ln}\:\left({t}−\mathrm{1}\right)\:−\frac{\mathrm{3}−\sqrt{\mathrm{6}}}{\mathrm{24}\left({t}−\mathrm{1}\right)}= \\ $$$$=\frac{\sqrt{\mathrm{6}}}{\mathrm{24}}\mathrm{ln}\:\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\:+\frac{\sqrt{\mathrm{6}}{t}−\mathrm{3}}{\mathrm{12}\left({t}^{\mathrm{2}} −\mathrm{1}\right)}= \\ $$$$=\frac{\sqrt{\mathrm{6}}}{\mathrm{24}}\mathrm{ln}\:\mid\frac{\mathrm{2}{x}+\mathrm{2}−\sqrt{\mathrm{6}}}{\mathrm{2}{x}+\mathrm{2}+\sqrt{\mathrm{6}}}\mid\:+\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{4}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}\right)}+{C} \\ $$

Commented by MikeH last updated on 25/Apr/22

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com