Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 169092 by Shrinava last updated on 24/Apr/22

Answered by mr W last updated on 24/Apr/22

Commented by mr W last updated on 24/Apr/22

BE^2 =a^2 +b^2 −2ab cos (π−(π/2)−θ)  BE^2 =a^2 +b^2 −2ab sin θ=((√2)c)^2     ...(i)  replace θ with −θ we get  BD^2 =a^2 +b^2 +2ab sin θ=((√2)d)^2    ...(ii)  (i)+(ii):  2(a^2 +b^2 )=2c^2 +2d^2   ⇒a^2 +b^2 =c^2 +d^2    proved✓    it can also be proved that the blue  square and the green square always  touch each other as shown.  sin (α+(π/4))=((a cos θ)/( (√(a^2 +b^2 −2ab sin θ))))  sin (β+(π/4))=((a cos θ)/( (√(a^2 +b^2 +2ab sin θ))))  ((√2)a)^2 =c^2 +d^2 +2cd sin (α+β)  ?  2a^2 =c^2 +d^2 −2cd cos (α+(π/4)+β+(π/4))  b^2 −a^2 sin^2  θ=(√((a^2  sin^2  θ+b^2 )^2 −4a^2 b^2  sin^2  θ))  b^4 +a^4 sin^4  θ=(a^2  sin^2  θ+b^2 )^2 −2a^2 b^2  sin^2  θ  0=0 ✓

$${BE}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\left(\pi−\frac{\pi}{\mathrm{2}}−\theta\right) \\ $$$${BE}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{sin}\:\theta=\left(\sqrt{\mathrm{2}}{c}\right)^{\mathrm{2}} \:\:\:\:...\left({i}\right) \\ $$$${replace}\:\theta\:{with}\:−\theta\:{we}\:{get} \\ $$$${BD}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{sin}\:\theta=\left(\sqrt{\mathrm{2}}{d}\right)^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)=\mathrm{2}{c}^{\mathrm{2}} +\mathrm{2}{d}^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} +{d}^{\mathrm{2}} \:\:\:{proved}\checkmark \\ $$$$ \\ $$$${it}\:{can}\:{also}\:{be}\:{proved}\:{that}\:{the}\:{blue} \\ $$$${square}\:{and}\:{the}\:{green}\:{square}\:{always} \\ $$$${touch}\:{each}\:{other}\:{as}\:{shown}. \\ $$$$\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{4}}\right)=\frac{{a}\:\mathrm{cos}\:\theta}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{sin}\:\theta}} \\ $$$$\mathrm{sin}\:\left(\beta+\frac{\pi}{\mathrm{4}}\right)=\frac{{a}\:\mathrm{cos}\:\theta}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{sin}\:\theta}} \\ $$$$\left(\sqrt{\mathrm{2}}{a}\right)^{\mathrm{2}} ={c}^{\mathrm{2}} +{d}^{\mathrm{2}} +\mathrm{2}{cd}\:\mathrm{sin}\:\left(\alpha+\beta\right)\:\:? \\ $$$$\mathrm{2}{a}^{\mathrm{2}} ={c}^{\mathrm{2}} +{d}^{\mathrm{2}} −\mathrm{2}{cd}\:\mathrm{cos}\:\left(\alpha+\frac{\pi}{\mathrm{4}}+\beta+\frac{\pi}{\mathrm{4}}\right) \\ $$$${b}^{\mathrm{2}} −{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta=\sqrt{\left({a}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$${b}^{\mathrm{4}} +{a}^{\mathrm{4}} \mathrm{sin}^{\mathrm{4}} \:\theta=\left({a}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta \\ $$$$\mathrm{0}=\mathrm{0}\:\checkmark \\ $$

Commented by Tawa11 last updated on 24/Apr/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by Shrinava last updated on 24/Apr/22

Perfect dear sir thank you

$$\mathrm{Perfect}\:\mathrm{dear}\:\mathrm{sir}\:\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com