Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 169117 by infinityaction last updated on 24/Apr/22

Answered by greougoury555 last updated on 24/Apr/22

 f(x,y,λ)= (x^3 +1)(y^3 +1)+λ(x+y−1)   (∂f/∂x) = 3x^2 (y^3 +1)+λ=0   (∂f/∂y) = 3y^2 (x^3 +1)+λ=0   (∂f/∂λ) = x+y=1  ⇒3x^2 (y^3 +1)=3y^2 (x^3 +1)  ⇒x^2 (y^3 +1)=y^2 (x^3 +1)  ⇒x^2 y^3 +x^2 = x^3 y^2 +y^2   ⇒x^2 y^2 (y−x)=y^2 −x^2   ⇒x^2 y^2 (y−x)−(y−x)(y+x)=0  ⇒(y−x)(x^2 y^2 −y−x)=0  for  { ((y=x)),((x+y=1)) :}⇒x=y=(1/2)   f=((9/8))^2 = ((81)/(64))  for  { ((y+x=x^2 y^2 )),((y+x=1)) :}⇒x^2 y^2 =1  ⇒(1−x)^2  x^2 =1  ⇒(1−2x+x^2 )x^2 −1=0  ⇒x^4 −2x^3 +x^2 −1=0  ⇒ { ((x_1 =((1+(√5))/2)⇒y_1 =((1−(√5))/2))),((x_2 =((1−(√5))/2)⇒y_2 =((1+(√5))/2))) :}   f={(((1+(√5))/2))^3 +1}{(((1−(√5))/2))^3 +1}    f= 4 (maximal)

$$\:{f}\left({x},{y},\lambda\right)=\:\left({x}^{\mathrm{3}} +\mathrm{1}\right)\left({y}^{\mathrm{3}} +\mathrm{1}\right)+\lambda\left({x}+{y}−\mathrm{1}\right) \\ $$$$\:\frac{\partial{f}}{\partial{x}}\:=\:\mathrm{3}{x}^{\mathrm{2}} \left({y}^{\mathrm{3}} +\mathrm{1}\right)+\lambda=\mathrm{0} \\ $$$$\:\frac{\partial{f}}{\partial{y}}\:=\:\mathrm{3}{y}^{\mathrm{2}} \left({x}^{\mathrm{3}} +\mathrm{1}\right)+\lambda=\mathrm{0} \\ $$$$\:\frac{\partial{f}}{\partial\lambda}\:=\:{x}+{y}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{3}{x}^{\mathrm{2}} \left({y}^{\mathrm{3}} +\mathrm{1}\right)=\mathrm{3}{y}^{\mathrm{2}} \left({x}^{\mathrm{3}} +\mathrm{1}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} \left({y}^{\mathrm{3}} +\mathrm{1}\right)={y}^{\mathrm{2}} \left({x}^{\mathrm{3}} +\mathrm{1}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} {y}^{\mathrm{3}} +{x}^{\mathrm{2}} =\:{x}^{\mathrm{3}} {y}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} {y}^{\mathrm{2}} \left({y}−{x}\right)={y}^{\mathrm{2}} −{x}^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} {y}^{\mathrm{2}} \left({y}−{x}\right)−\left({y}−{x}\right)\left({y}+{x}\right)=\mathrm{0} \\ $$$$\Rightarrow\left({y}−{x}\right)\left({x}^{\mathrm{2}} {y}^{\mathrm{2}} −{y}−{x}\right)=\mathrm{0} \\ $$$${for}\:\begin{cases}{{y}={x}}\\{{x}+{y}=\mathrm{1}}\end{cases}\Rightarrow{x}={y}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:{f}=\left(\frac{\mathrm{9}}{\mathrm{8}}\right)^{\mathrm{2}} =\:\frac{\mathrm{81}}{\mathrm{64}} \\ $$$${for}\:\begin{cases}{{y}+{x}={x}^{\mathrm{2}} {y}^{\mathrm{2}} }\\{{y}+{x}=\mathrm{1}}\end{cases}\Rightarrow{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{1}−{x}\right)^{\mathrm{2}} \:{x}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{1}−\mathrm{2}{x}+{x}^{\mathrm{2}} \right){x}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\begin{cases}{{x}_{\mathrm{1}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\Rightarrow{y}_{\mathrm{1}} =\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}}\\{{x}_{\mathrm{2}} =\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\Rightarrow{y}_{\mathrm{2}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}}\end{cases} \\ $$$$\:{f}=\left\{\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{3}} +\mathrm{1}\right\}\left\{\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{3}} +\mathrm{1}\right\}\: \\ $$$$\:{f}=\:\mathrm{4}\:\left({maximal}\right)\: \\ $$$$ \\ $$

Commented by infinityaction last updated on 24/Apr/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by tahish last updated on 24/Apr/22

sir muje new image updolad krani ho to kaiser kare

Commented by infinityaction last updated on 26/Apr/22

meri talegram id @infinity_action  hai aap vaha pr pucche

$${meri}\:{talegram}\:{id}\:@{infinity\_action} \\ $$$${hai}\:{aap}\:{vaha}\:{pr}\:{pucche} \\ $$

Answered by MJS_new last updated on 24/Apr/22

y=1−x  ⇒  f(x)=(x^3 +1)×(y^3 +1)=(x^3 +1)×((1−x)^3 +1)=  =(x^2 −x+1)(x+1)×(x^2 −x+1)(2−x)=  =−(x−2)(x+1)(x^2 −x+1)^2     f′(x)=0  −3(2x−1)(x^2 −x−1)(x^2 −x+1)=0  x_1 =(1/2)−((√5)/2); f(x_1 )=4  x_2 =(1/2); f(x_2 )=((81)/(64))  x_3 =(1/2)+((√5)/2); f(x_3 )=4  max value is 4

$${y}=\mathrm{1}−{x} \\ $$$$\Rightarrow \\ $$$${f}\left({x}\right)=\left({x}^{\mathrm{3}} +\mathrm{1}\right)×\left({y}^{\mathrm{3}} +\mathrm{1}\right)=\left({x}^{\mathrm{3}} +\mathrm{1}\right)×\left(\left(\mathrm{1}−{x}\right)^{\mathrm{3}} +\mathrm{1}\right)= \\ $$$$=\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)\left({x}+\mathrm{1}\right)×\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)\left(\mathrm{2}−{x}\right)= \\ $$$$=−\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${f}'\left({x}\right)=\mathrm{0} \\ $$$$−\mathrm{3}\left(\mathrm{2}{x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{5}}}{\mathrm{2}};\:{f}\left({x}_{\mathrm{1}} \right)=\mathrm{4} \\ $$$${x}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}};\:{f}\left({x}_{\mathrm{2}} \right)=\frac{\mathrm{81}}{\mathrm{64}} \\ $$$${x}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}};\:{f}\left({x}_{\mathrm{3}} \right)=\mathrm{4} \\ $$$$\mathrm{max}\:\mathrm{value}\:\mathrm{is}\:\mathrm{4} \\ $$

Commented by infinityaction last updated on 24/Apr/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by mr W last updated on 24/Apr/22

S=(x^3 +1)(y^3 +1)    =1+(xy)^3 +x^3 +y^3     =1+(xy)^3 +(x+y)^3 −3xy(x+y)    =1+(xy)^3 +1−3xy    =(xy)^3 −3(xy)+2  (xy)^3 −3(xy)+2−S=0  Δ=(−1)^3 +(1−(S/2))^2 ≤0  −1≤1−(S/2)≤1  0≤S≤4 ⇒S_(max) =4

$${S}=\left({x}^{\mathrm{3}} +\mathrm{1}\right)\left({y}^{\mathrm{3}} +\mathrm{1}\right) \\ $$$$\:\:=\mathrm{1}+\left({xy}\right)^{\mathrm{3}} +{x}^{\mathrm{3}} +{y}^{\mathrm{3}} \\ $$$$\:\:=\mathrm{1}+\left({xy}\right)^{\mathrm{3}} +\left({x}+{y}\right)^{\mathrm{3}} −\mathrm{3}{xy}\left({x}+{y}\right) \\ $$$$\:\:=\mathrm{1}+\left({xy}\right)^{\mathrm{3}} +\mathrm{1}−\mathrm{3}{xy} \\ $$$$\:\:=\left({xy}\right)^{\mathrm{3}} −\mathrm{3}\left({xy}\right)+\mathrm{2} \\ $$$$\left({xy}\right)^{\mathrm{3}} −\mathrm{3}\left({xy}\right)+\mathrm{2}−{S}=\mathrm{0} \\ $$$$\Delta=\left(−\mathrm{1}\right)^{\mathrm{3}} +\left(\mathrm{1}−\frac{{S}}{\mathrm{2}}\right)^{\mathrm{2}} \leqslant\mathrm{0} \\ $$$$−\mathrm{1}\leqslant\mathrm{1}−\frac{{S}}{\mathrm{2}}\leqslant\mathrm{1} \\ $$$$\mathrm{0}\leqslant{S}\leqslant\mathrm{4}\:\Rightarrow{S}_{{max}} =\mathrm{4} \\ $$

Commented by infinityaction last updated on 25/Apr/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com