All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 169164 by 0731619 last updated on 25/Apr/22
Commented by infinityaction last updated on 25/Apr/22
y=ln((1−sinx)/cosx(1+sinx)/cosxy=ln(secx−tanx)(secx−tanx)(secx+tanx)(secx−tanx)y=ln(secx−tanx)dydx=secx(tanx−secx)(secx−tanx)dydx=−secx
letp=x2+3x(x+1)(x2+1)p=(x+1)2+(x−1)(x+1)(x2+1)p=x+1x2+1+x−1(x+1)(x2+1)p=x+1x2+1−(x2+1)−x(x+1)(x+1)(x2+1)p=x+1x2+1−1x+1+xx2+1p=2xx2+1+1x2+1−1x+1I=∫01{2xx2+1+1x2+1−1x+1}dxI=[log(x2+1)+tan−1(x)+log(x+1)]01I=log2+π4+log2I=π4+log4
Answered by Mathspace last updated on 25/Apr/22
1)F(x)=ln(1−cos(π2−x)1+cos(π2−x))=ln2sin2(π4−x2)2cos2(π4−x2)=ln∣tan(π4−x2)⇒F′(x)=−12(1+tan2(π4−x2))tan(π4−x2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com