Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 169164 by 0731619 last updated on 25/Apr/22

Commented by infinityaction last updated on 25/Apr/22

y = ln ((√(((1−sin x)/cos x)/((1+sin x)/cos x)))  y = ln (√(((sec x−tan x)(sec x−tan x))/((sec x+tan x)(sec x−tan x))))  y = ln (sec x−tan x)  (dy/dx) = ((sec x(tan x−sec x))/((sec x−tan x)))  (dy/dx) = −sec x

y=ln((1sinx)/cosx(1+sinx)/cosxy=ln(secxtanx)(secxtanx)(secx+tanx)(secxtanx)y=ln(secxtanx)dydx=secx(tanxsecx)(secxtanx)dydx=secx

Commented by infinityaction last updated on 25/Apr/22

  let       p     =     ((x^2 +3x)/((x+1)(x^2 +1)))      p     =    (((x+1)^2 +(x−1))/((x+1)(x^2 +1)))      p      =    ((x+1)/(x^2 +1))  + ((x−1)/((x+1)(x^2 +1)))      p      =     ((x+1)/(x^2 +1)) − (((x^2 +1)−x(x+1))/((x+1)(x^2 +1)))      p       =    ((x+1)/(x^2 +1)) − (1/(x+1)) +(x/(x^2 +1))      p      =     ((2x)/(x^2 +1))+(1/(x^2 +1)) − (1/(x+1))       I      =   ∫_0 ^1 {((2x)/(x^2 +1))+(1/(x^2 +1))−(1/(x+1))}dx       I     =   [log (x^2 +1) + tan^(−1) (x) + log (x+1)]_0 ^1       I     =    log 2  + (π/4) + log 2      I    =  (π/4) + log 4

letp=x2+3x(x+1)(x2+1)p=(x+1)2+(x1)(x+1)(x2+1)p=x+1x2+1+x1(x+1)(x2+1)p=x+1x2+1(x2+1)x(x+1)(x+1)(x2+1)p=x+1x2+11x+1+xx2+1p=2xx2+1+1x2+11x+1I=01{2xx2+1+1x2+11x+1}dxI=[log(x2+1)+tan1(x)+log(x+1)]01I=log2+π4+log2I=π4+log4

Answered by Mathspace last updated on 25/Apr/22

  1)F(x)=ln((√((1−cos((π/2)−x))/(1+cos((π/2)−x)))))  =ln(√((2sin^2 ((π/4)−(x/2)))/(2cos^2 ((π/4)−(x/2)))))  =ln∣tan((π/4)−(x/2)) ⇒  F^′ (x)=((−(1/2)(1+tan^2 ((π/4)−(x/2))))/(tan((π/4)−(x/2))))

1)F(x)=ln(1cos(π2x)1+cos(π2x))=ln2sin2(π4x2)2cos2(π4x2)=lntan(π4x2)F(x)=12(1+tan2(π4x2))tan(π4x2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com