Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 169287 by cortano1 last updated on 28/Apr/22

  solve : x^3  (d^3 y/dx^3 ) + 2x^2  (d^2 y/dx^2 ) +2y = 10(x+(1/x))

solve:x3d3ydx3+2x2d2ydx2+2y=10(x+1x)

Commented by infinityaction last updated on 01/May/22

     let z = log _e x ⇒ x = e^z      {D(D−1)(D−2) + 2D(D−1) + 2}y = 10(e^(z ) +e^(−z) )          where (d/dz) = D  Auxiliary  Equation           m^3 −m^2 +2 = 0          (m+1)(m^2 −2m+2) = 0         m = −1,1+_− i        C.F = c_1 e^(−x) +e^z (c_2 cos z+ c_3 sin z)        C.F    =  c_1 x^(−1)  + x{c_2 cos (log x) + c_3 sin (log x)}             P.I = (1/((D+1)(D^2 −2D+2)))10(e^z  + e^(−z) )           P.I = 10{(1/((D+1)(D^2 −2D+2)))e^z +(1/((D+1)(D^2 −2D+2)))e^(−z) }                P.I      =    10{(e^z /2) + (1/(D+1))∙(e^(−z) /(1+2+2))}              P.I    =10{(e^z /2) + (1/5) (1/((D+1)))e^(−z) }            P.I  =10{(e^(−z) /2) + (e^(−z) /5) (1/((D−1+1)))∙1}           P.I    =  10{(e^z /2) +((ze^(−z) )/5)} = 5x+2x^(−1) log x     y = c_1 x^(−1) +x{c_2 cos (log x)+c_3 sin (log x)}+5x+2x^(−1) log x

letz=logexx=ez{D(D1)(D2)+2D(D1)+2}y=10(ez+ez)whereddz=DAuxiliaryEquationm3m2+2=0(m+1)(m22m+2)=0m=1,1+iC.F=c1ex+ez(c2cosz+c3sinz)C.F=c1x1+x{c2cos(logx)+c3sin(logx)}P.I=1(D+1)(D22D+2)10(ez+ez)P.I=10{1(D+1)(D22D+2)ez+1(D+1)(D22D+2)ez}P.I=10{ez2+1D+1ez1+2+2}P.I=10{ez2+151(D+1)ez}P.I=10{ez2+ez51(D1+1)1}P.I=10{ez2+zez5}=5x+2x1logxy=c1x1+x{c2cos(logx)+c3sin(logx)}+5x+2x1logx

Commented by cortano1 last updated on 28/Apr/22

nice

nice

Terms of Service

Privacy Policy

Contact: info@tinkutara.com