Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 1694 by 123456 last updated on 01/Sep/15

proof that for two set A and B (or give a counter example)  ∣A∪B∣≥∣A∩B∣

$$\mathrm{proof}\:\mathrm{that}\:\mathrm{for}\:\mathrm{two}\:\mathrm{set}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\left(\mathrm{or}\:\mathrm{give}\:\mathrm{a}\:\mathrm{counter}\:\mathrm{example}\right) \\ $$$$\mid\mathrm{A}\cup\mathrm{B}\mid\geqslant\mid\mathrm{A}\cap\mathrm{B}\mid \\ $$

Answered by Rasheed Soomro last updated on 01/Sep/15

 In the following A and B are assumed as finite sets.   A∩B ⊆A⊆ A∪B⇒∣A∩B∣≤∣A∣≤∣A∪B∣...........I   A∩B ⊆B⊆ A∪B⇒∣A∩B∣≤∣B∣≤∣A∪B∣...........II   From I and II on adding,   2∣A∩B∣≤∣A∣+∣B∣≤2∣A∪B∣   ∣A∩B∣≤((∣A∣+∣B∣)/2) ≤∣A∪B∣    [ Dividing by 2]   ∣A∪B∣≥∣A∩B∣

$$\:\mathrm{In}\:\mathrm{the}\:\mathrm{following}\:\boldsymbol{\mathrm{A}}\:\mathrm{and}\:\boldsymbol{\mathrm{B}}\:\mathrm{are}\:\mathrm{assumed}\:\mathrm{as}\:\mathrm{finite}\:\mathrm{sets}. \\ $$$$\:\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\:\subseteq\boldsymbol{\mathrm{A}}\subseteq\:\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\Rightarrow\mid\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\mid\leqslant\mid\boldsymbol{\mathrm{A}}\mid\leqslant\mid\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\mid...........\boldsymbol{\mathrm{I}} \\ $$$$\:\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\:\subseteq\boldsymbol{\mathrm{B}}\subseteq\:\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\Rightarrow\mid\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\mid\leqslant\mid\boldsymbol{\mathrm{B}}\mid\leqslant\mid\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\mid...........\boldsymbol{\mathrm{II}} \\ $$$$\:\mathrm{From}\:\boldsymbol{\mathrm{I}}\:\mathrm{and}\:\boldsymbol{\mathrm{II}}\:\mathrm{on}\:\mathrm{adding}, \\ $$$$\:\mathrm{2}\mid\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\mid\leqslant\mid\boldsymbol{\mathrm{A}}\mid+\mid\boldsymbol{\mathrm{B}}\mid\leqslant\mathrm{2}\mid\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\mid \\ $$$$\:\mid\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\mid\leqslant\frac{\mid\boldsymbol{\mathrm{A}}\mid+\mid\boldsymbol{\mathrm{B}}\mid}{\mathrm{2}}\:\leqslant\mid\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\mid\:\:\:\:\left[\:\mathrm{Dividing}\:\mathrm{by}\:\mathrm{2}\right] \\ $$$$\:\mid\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\mid\geqslant\mid\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\mid \\ $$

Answered by Rasheed Soomro last updated on 01/Sep/15

A∩B ⊆ A ⊆ A∪ B⇒∣A∩B∣≤∣A∣≤∣A∪B∣⇒∣A∪B∣≥∣A∩B∣

$$\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\:\subseteq\:\boldsymbol{\mathrm{A}}\:\subseteq\:\boldsymbol{\mathrm{A}}\cup\:\boldsymbol{\mathrm{B}}\Rightarrow\mid\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\mid\leqslant\mid\boldsymbol{\mathrm{A}}\mid\leqslant\mid\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\mid\Rightarrow\mid\mathrm{A}\cup\mathrm{B}\mid\geqslant\mid\mathrm{A}\cap\mathrm{B}\mid \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com