Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 169497 by Huy last updated on 01/May/22

Determine all functions f:R→R such that  af(b)+bf(a)=(a+b)f((√(ab))) ∀ab>0

$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{functions}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{such}\:\mathrm{that} \\ $$ $$\mathrm{a}{f}\left(\mathrm{b}\right)+\mathrm{b}{f}\left(\mathrm{a}\right)=\left(\mathrm{a}+\mathrm{b}\right){f}\left(\sqrt{\mathrm{ab}}\right)\:\forall\mathrm{ab}>\mathrm{0} \\ $$

Answered by aleks041103 last updated on 02/May/22

let a=x, b=x+2dx  (√(ab))=(√(x(x+2dx)))=x(1+2(dx/x))^(1/2) =x+dx  xf(x+2dx)+(x+2dx)f(x)=2(x+dx)f(x+dx)  f(x+dx)=f+f ′dx+((f′′)/2)dx^2   f(x+2dx)=f+2f ′dx+2f ′′dx^2   x(f+2f ′dx+2f ′′dx^2 )+xf+2fdx=  =2(x+dx)(f+f ′dx+((f′′)/2)dx^2 )  xf+xf′dx+fdx+xf′′dx^2 =  =xf+xf′dx+fdx+(1/2)xf′′dx^2 +f′dx^2 +(1/2)f′′dx^3   ⇒xf′′dx^2 =((1/2)xf′′+f′)dx^2   (1/2)xf′′=f′  let f′=g  ⇒(dg/dx)=((2g)/x)  ⇒(dg/g)=((2dx)/x)  ⇒d(ln(g)−2ln(x))=0  ⇒g=3cx^2   ⇒f=cx^3 +s  ⇒a(cb^3 +s)+b(ca^3 +s)=(a+b)(c(ab)^(3/2) +s)  ⇒(a+b)(a^2 +b^2 )=(a+b)(ab)^(3/2)   ⇒(a^2 +b^2 )^2 =a^3 b^3   which is generally not true!  it would be iff c=0  ⇒f(x)=const. is the only solution.    Note!  This applies only for continuous functions.

$${let}\:{a}={x},\:{b}={x}+\mathrm{2}{dx} \\ $$ $$\sqrt{{ab}}=\sqrt{{x}\left({x}+\mathrm{2}{dx}\right)}={x}\left(\mathrm{1}+\mathrm{2}\frac{{dx}}{{x}}\right)^{\mathrm{1}/\mathrm{2}} ={x}+{dx} \\ $$ $${xf}\left({x}+\mathrm{2}{dx}\right)+\left({x}+\mathrm{2}{dx}\right){f}\left({x}\right)=\mathrm{2}\left({x}+{dx}\right){f}\left({x}+{dx}\right) \\ $$ $${f}\left({x}+{dx}\right)={f}+{f}\:'{dx}+\frac{{f}''}{\mathrm{2}}{dx}^{\mathrm{2}} \\ $$ $${f}\left({x}+\mathrm{2}{dx}\right)={f}+\mathrm{2}{f}\:'{dx}+\mathrm{2}{f}\:''{dx}^{\mathrm{2}} \\ $$ $${x}\left({f}+\mathrm{2}{f}\:'{dx}+\mathrm{2}{f}\:''{dx}^{\mathrm{2}} \right)+{xf}+\mathrm{2}{fdx}= \\ $$ $$=\mathrm{2}\left({x}+{dx}\right)\left({f}+{f}\:'{dx}+\frac{{f}''}{\mathrm{2}}{dx}^{\mathrm{2}} \right) \\ $$ $${xf}+{xf}'{dx}+{fdx}+{xf}''{dx}^{\mathrm{2}} = \\ $$ $$={xf}+{xf}'{dx}+{fdx}+\frac{\mathrm{1}}{\mathrm{2}}{xf}''{dx}^{\mathrm{2}} +{f}'{dx}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{f}''{dx}^{\mathrm{3}} \\ $$ $$\Rightarrow{xf}''{dx}^{\mathrm{2}} =\left(\frac{\mathrm{1}}{\mathrm{2}}{xf}''+{f}'\right){dx}^{\mathrm{2}} \\ $$ $$\frac{\mathrm{1}}{\mathrm{2}}{xf}''={f}' \\ $$ $${let}\:{f}'={g} \\ $$ $$\Rightarrow\frac{{dg}}{{dx}}=\frac{\mathrm{2}{g}}{{x}} \\ $$ $$\Rightarrow\frac{{dg}}{{g}}=\frac{\mathrm{2}{dx}}{{x}} \\ $$ $$\Rightarrow{d}\left({ln}\left({g}\right)−\mathrm{2}{ln}\left({x}\right)\right)=\mathrm{0} \\ $$ $$\Rightarrow{g}=\mathrm{3}{cx}^{\mathrm{2}} \\ $$ $$\Rightarrow{f}={cx}^{\mathrm{3}} +{s} \\ $$ $$\Rightarrow{a}\left({cb}^{\mathrm{3}} +{s}\right)+{b}\left({ca}^{\mathrm{3}} +{s}\right)=\left({a}+{b}\right)\left({c}\left({ab}\right)^{\mathrm{3}/\mathrm{2}} +{s}\right) \\ $$ $$\Rightarrow\left({a}+{b}\right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)=\left({a}+{b}\right)\left({ab}\right)^{\mathrm{3}/\mathrm{2}} \\ $$ $$\Rightarrow\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} ={a}^{\mathrm{3}} {b}^{\mathrm{3}} \\ $$ $${which}\:{is}\:{generally}\:{not}\:{true}! \\ $$ $${it}\:{would}\:{be}\:{iff}\:{c}=\mathrm{0} \\ $$ $$\Rightarrow{f}\left({x}\right)={const}.\:{is}\:{the}\:{only}\:{solution}. \\ $$ $$ \\ $$ $${Note}! \\ $$ $${This}\:{applies}\:{only}\:{for}\:{continuous}\:{functions}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com