Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 169558 by greougoury555 last updated on 03/May/22

       (dy/dx) = ((2x−y+1)/(x−4y+3))

dydx=2xy+1x4y+3

Answered by ali009 last updated on 03/May/22

a1=2  a2=1                    a1/a2=2  b1=−1  b2=−4            b1/b2=(1/4)  so  2x−y+1=0  −2x+8y−6=0  −−−−−−−  7y−5=0  y=(5/7)  (5/7)=2x+1   x=−(1/7)   let x=X−(1/7)          dx=dX          y=Y+(5/7)          dy=dY  (dY/dX)=((2(X−(1/7))−(Y+(5/7))+1)/((X−(1/7))−4(Y+(5/7))+3))  (dY/dX)=((2X−Y)/(X−4Y))  (dY/dX)=((2−(Y/X))/(1−4(Y/x)))  let (Y/X)=v    (dY/dX)=v+X(dv/dX)  v+X(dv/dX)=((2−v)/(1−4v))  X(dv/dX)=((2−v)/(1−4v))−v  X(dv/dX)=((2−v−(1−4v)(v))/(1−4v))  X(dv/dX)=((2−v−v+4v^2 )/(1−4v))  ((1−4v)/(4v^2 −2v+2))dv=(dx/X)  −(1/2)∫((4v−1)/(2v^2 −v+2))dv=∫(dx/X)  −(1/2)ln(2v^2 −v+2)=ln(X)+c  ln(2v^2 −v+2)=−ln(X)+C_1   2v^2 −v+2=(C_2 /X)  2((Y/X))^2 −(Y/x)+2=(C_2 /X)  (x+(1/7))(2(((y−(5/7))/(x+(1/7))))^2 −((y−(5/7))/(x+(1/7)))+2)=C_2

a1=2a2=1a1/a2=2b1=1b2=4b1/b2=14so2xy+1=02x+8y6=07y5=0y=5757=2x+1x=17letx=X17dx=dXy=Y+57dy=dYdYdX=2(X17)(Y+57)+1(X17)4(Y+57)+3dYdX=2XYX4YdYdX=2YX14YxletYX=vdYdX=v+XdvdXv+XdvdX=2v14vXdvdX=2v14vvXdvdX=2v(14v)(v)14vXdvdX=2vv+4v214v14v4v22v+2dv=dxX124v12v2v+2dv=dxX12ln(2v2v+2)=ln(X)+cln(2v2v+2)=ln(X)+C12v2v+2=C2X2(YX)2Yx+2=C2X(x+17)(2(y57x+17)2y57x+17+2)=C2

Commented by Tawa11 last updated on 03/May/22

Great sir

Greatsir

Answered by mr W last updated on 03/May/22

let x=u+a, y=v+b  2x−y+1=2u−v+(2a−b+1)  x−4y+3=u−3b+(a−4b+3)  set  2a−b+1=0  a−4b+3=0  i.e. a=−(1/7), b=(5/7)  ⇒(dy/dx)=((2u−v)/(u−4v))  ⇒(dv/du)=((2u−v)/(u−4v))  let v=ut  (dv/du)=t+u(dt/du)  ⇒t+u(dt/du)=((2−t)/(1−4t))  ⇒u(dt/du)=((2(1−t+2t^2 ))/(1−4t))  ⇒(((4t−1)dt)/(2t^2 −t+1))=−((2du)/u)  ⇒∫(((4t−1)dt)/(2t^2 −t+1))=−∫((2du)/u)  ⇒∫((d(2t^2 −t+1))/(2t^2 −t+1))=−∫((2du)/u)  ⇒ln (2t^2 −t+1)=−2ln u+C  (2t^2 −t+1)u^2 =C  (((2v^2 )/u^2 )−(v/u)+1)u^2 =C  [2(((y+(5/7))/(x−(1/7))))^2 −(((y+(5/7))/(x−(1/7))))+1](x−(1/7))^2 =C  ⇒[2(((7y+5)/(7x−1)))^2 −((7y+5)/(7x−1))+1](7x−1)^2 =C

letx=u+a,y=v+b2xy+1=2uv+(2ab+1)x4y+3=u3b+(a4b+3)set2ab+1=0a4b+3=0i.e.a=17,b=57dydx=2uvu4vdvdu=2uvu4vletv=utdvdu=t+udtdut+udtdu=2t14tudtdu=2(1t+2t2)14t(4t1)dt2t2t+1=2duu(4t1)dt2t2t+1=2duud(2t2t+1)2t2t+1=2duuln(2t2t+1)=2lnu+C(2t2t+1)u2=C(2v2u2vu+1)u2=C[2(y+57x17)2(y+57x17)+1](x17)2=C[2(7y+57x1)27y+57x1+1](7x1)2=C

Commented by Tawa11 last updated on 03/May/22

Great sir

Greatsir

Answered by princeDera last updated on 15/Aug/22

(dy/dx) = ((2x−y+1)/(x−4y+3))    (x−4y+3)dy + (y−2x−1)dx = 0    m = x−4y+3 and n=y−2x−1  (∂/∂x)m = 1 and (∂/∂y)n = 1  the D.E is exact    the solution is of the form f(x,y) = c  (∂/∂x)f(x,y) = y − 2x − 1  f(x,y) = ∫(y−2x−1)dx = xy − x^2  − x + h(y)    (∂/∂y)f(x,y) = x + h′(y) = x − 4y + 3  h′(y) = 3−4y  h(y) = 3y − 2y^2   the solution to the D.E = f(x,y) = c  xy−x^2 −x+3y−2y^2  = c

dydx=2xy+1x4y+3(x4y+3)dy+(y2x1)dx=0m=x4y+3andn=y2x1xm=1andyn=1theD.Eisexactthesolutionisoftheformf(x,y)=cxf(x,y)=y2x1f(x,y)=(y2x1)dx=xyx2x+h(y)yf(x,y)=x+h(y)=x4y+3h(y)=34yh(y)=3y2y2thesolutiontotheD.E=f(x,y)=cxyx2x+3y2y2=c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com