Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 169600 by bounhome last updated on 04/May/22

give : x,y,z∈R   x+y+xy=8  y+z+yz=15  z+x+zx=35  ⇒x+y+z+xyz=?

give:x,y,zRx+y+xy=8y+z+yz=15z+x+zx=35x+y+z+xyz=?

Commented by infinityaction last updated on 04/May/22

       (1+x)(1+y) = 9       ..... (1)       (1+y)(1+z) = 16      .......(2)       (1+x)(1+z) =  36     .......(3)      (1+x)^2 (1+y)^2 (1+z)^2  =  9×16×36      (1+x)(1+y)(1+z)   =   72  ....(4)        eq.^n 4/eq.^n 1         z+1  =  8  ⇒ z = 7          similarly           y = 1   and   x = (7/2)       x+y+z+xyz = 36

(1+x)(1+y)=9.....(1)(1+y)(1+z)=16.......(2)(1+x)(1+z)=36.......(3)(1+x)2(1+y)2(1+z)2=9×16×36(1+x)(1+y)(1+z)=72....(4)eq.n4/eq.n1z+1=8z=7similarlyy=1andx=72x+y+z+xyz=36

Commented by Tawa11 last updated on 04/May/22

Great sir

Greatsir

Answered by ajfour last updated on 04/May/22

let   y=sx  ,  z=tx  x(1+s+sx)=8  x(s+t+stx)=15  x(t+1+tx)=35  s=(((8/x)−1)/(1+x))  ,  t=((((35)/x)−1)/(1+x))  ((43−2x)/(1+x))+(((8−x)(35−x))/((1+x)^2 ))=15  ⇒  (43−2x)(1+x)    +(8−x)(35−x)=15(1+x)^2   ⇒  −2x^2 +41x+43+280     +x^2 −43x=15x^2 +30x+15  ⇒  16x^2 +32x−308=0  4x(4x+8)=4×7×11  ⇒  4x=14    ⇒  x=(7/2), −((11)/2)  s=(((8/x)−1)/(1+x))  ,  t=((((35)/x)−1)/(1+x))  with   x=(7/2)    s=((((16)/7)−1)/(9/2))=(2/7)    ;  t=2  x+y+z+xyz=x(1+s+t)+stx^3     =(7/2){1+(2/7)+2+((7/2))^2 ((4/7))}   =(7/2)+1+7+((49)/2)=36.

lety=sx,z=txx(1+s+sx)=8x(s+t+stx)=15x(t+1+tx)=35s=8x11+x,t=35x11+x432x1+x+(8x)(35x)(1+x)2=15(432x)(1+x)+(8x)(35x)=15(1+x)22x2+41x+43+280+x243x=15x2+30x+1516x2+32x308=04x(4x+8)=4×7×114x=14x=72,112s=8x11+x,t=35x11+xwithx=72s=167192=27;t=2x+y+z+xyz=x(1+s+t)+stx3=72{1+27+2+(72)2(47)}=72+1+7+492=36.

Commented by Tawa11 last updated on 04/May/22

Great sir

Greatsir

Answered by mr W last updated on 04/May/22

x+y+xy+1=8+1=9  (x+1)(y+1)=9    ...(i)  (y+1)(z+1)=16   ...(ii)  (z+1)(x+1)=36   ...(iii)  (i)×(ii)×(iii):  (x+1)(y+1)(z+1)=±3×4×6   ...(iv)  (iv)/(i):  z+1=±((3×4×6)/9)=±8 ⇒z=7 or −9  x+1=±((3×4×6)/(16))=±(9/2) ⇒x=(7/2) or −((11)/2)  y+1=±((3×4×6)/(36))=±2 ⇒y=1 or −3    x+y+z+xyz=(7/2)+1+7+(7/2)×1×7=36  or  x+y+z+xyz=−((11)/2)−3−9−((11)/2)×3×9=−166

x+y+xy+1=8+1=9(x+1)(y+1)=9...(i)(y+1)(z+1)=16...(ii)(z+1)(x+1)=36...(iii)(i)×(ii)×(iii):(x+1)(y+1)(z+1)=±3×4×6...(iv)(iv)/(i):z+1=±3×4×69=±8z=7or9x+1=±3×4×616=±92x=72or112y+1=±3×4×636=±2y=1or3x+y+z+xyz=72+1+7+72×1×7=36orx+y+z+xyz=11239112×3×9=166

Commented by Tawa11 last updated on 04/May/22

Great sir

Greatsir

Answered by ajfour last updated on 06/May/22

z=((35−x)/(1+x))=((15−y)/(1+y))  ⇒   35+35y−x=15+15x−y  ⇒  36y+20=16x  ⇒   9y+5=4x  (9y+5)+4y+y(9y+5)=32  9y^2 +18y−27=0  y^2 +2y+1=4  ⇒  y+1=±2  y= −3, 1  corresponding x= −((11)/2), (7/2)  z=((15−y)/(1+y))= −9, 7  x+y+z+xyz= −17−(1/2)−((297)/2)        = −166  or = 11+(1/2)+((49)/2)= 36

z=35x1+x=15y1+y35+35yx=15+15xy36y+20=16x9y+5=4x(9y+5)+4y+y(9y+5)=329y2+18y27=0y2+2y+1=4y+1=±2y=3,1correspondingx=112,72z=15y1+y=9,7x+y+z+xyz=17122972=166or=11+12+492=36

Terms of Service

Privacy Policy

Contact: info@tinkutara.com