Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 169711 by mnjuly1970 last updated on 06/May/22

      prove that:        lim_( x → 0) ( (1/x^( 2) )  − (e^( x) /((e^( x) −1 )^( 2) )) ) = (1/(12))

$$ \\ $$$$\:\:\:\:{prove}\:{that}: \\ $$$$\:\: \\ $$$$\:\:{lim}_{\:{x}\:\rightarrow\:\mathrm{0}} \left(\:\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:\:−\:\frac{{e}^{\:{x}} }{\left({e}^{\:{x}} −\mathrm{1}\:\right)^{\:\mathrm{2}} }\:\right)\:=\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\:\:\:\:\:\: \\ $$

Commented by infinityaction last updated on 06/May/22

i think question is wrong

$${i}\:{think}\:{question}\:{is}\:{wrong} \\ $$

Commented by cortano1 last updated on 07/May/22

no. the question right

$${no}.\:{the}\:{question}\:{right} \\ $$

Commented by infinityaction last updated on 07/May/22

thank you sir   got my mistake

$${thank}\:{you}\:{sir}\: \\ $$$${got}\:{my}\:{mistake} \\ $$

Answered by qaz last updated on 07/May/22

L=lim_(x→0) ((1/x^2 )−(e^x /((e^x −1)^2 )))=lim_(x→0) ((e^(2x) −2e^x +1−x^2 e^x )/x^4 )  e^(2x) −2e^x +1−x^2 e^x   =(1+2x+(1/2)(2x)^2 +(1/6)(2x)^3 +(1/(24))(2x)^4 +...)−2(1+x+(1/2)x^2 +(1/6)x^3 +(1/(24))x^4 +...)+  1−x^2 (1+x+(1/2)x^2 +...)  =(((16)/(24))−(2/(24))−(1/2))x^4 +...=(1/(12))x^4 +o(x^4 )  ⇒L=lim_(x→0) (((1/(12))x^4 +o(x^4 ))/x^4 )=(1/(12))

$$\mathrm{L}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }−\frac{\mathrm{e}^{\mathrm{x}} }{\left(\mathrm{e}^{\mathrm{x}} −\mathrm{1}\right)^{\mathrm{2}} }\right)=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{2x}} −\mathrm{2e}^{\mathrm{x}} +\mathrm{1}−\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{x}} }{\mathrm{x}^{\mathrm{4}} } \\ $$$$\mathrm{e}^{\mathrm{2x}} −\mathrm{2e}^{\mathrm{x}} +\mathrm{1}−\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{x}} \\ $$$$=\left(\mathrm{1}+\mathrm{2x}+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2x}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{2x}\right)^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{24}}\left(\mathrm{2x}\right)^{\mathrm{4}} +...\right)−\mathrm{2}\left(\mathrm{1}+\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{24}}\mathrm{x}^{\mathrm{4}} +...\right)+ \\ $$$$\mathrm{1}−\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} +...\right) \\ $$$$=\left(\frac{\mathrm{16}}{\mathrm{24}}−\frac{\mathrm{2}}{\mathrm{24}}−\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{x}^{\mathrm{4}} +...=\frac{\mathrm{1}}{\mathrm{12}}\mathrm{x}^{\mathrm{4}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{4}} \right) \\ $$$$\Rightarrow\mathrm{L}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{\mathrm{12}}\mathrm{x}^{\mathrm{4}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{4}} \right)}{\mathrm{x}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{12}} \\ $$

Answered by cortano1 last updated on 07/May/22

 lim_(x→0)  (((e^x −1)^2 −x^2 e^x )/(x^2 (e^x −1)^2 ))    = lim_(x→0)  (((1+x+(x^2 /2)+(x^3 /6)+O(x^3 )−1)^2 −x^2 (1+x+(1/2)x^2 +(1/6)x^3 +O(x^3 )))/(x^2 (1+x+(1/2)x^2 +(1/6)x^3 +O(x^3 )−1)^2 ))   = lim_(x→0)  ((x+(1/2)x^2 +(1/6)x^3 +...−(x^2 +x^3 +(1/2)x^4 +(1/6)x^5 +...))/(x^2 (x+(1/2)x^2 +(1/6)x^3 +...)^2 ))   = lim_(x→0)  (((1/(12))x^4 +O(x^5 ))/(x^4 +O(x^5 ))) = (1/(12))

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({e}^{{x}} −\mathrm{1}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} {e}^{{x}} }{{x}^{\mathrm{2}} \left({e}^{{x}} −\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+{O}\left({x}^{\mathrm{3}} \right)−\mathrm{1}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \left(\mathrm{1}+{x}+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} +{O}\left({x}^{\mathrm{3}} \right)\right)}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} +{O}\left({x}^{\mathrm{3}} \right)−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} +...−\left({x}^{\mathrm{2}} +{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{5}} +...\right)}{{x}^{\mathrm{2}} \left({x}+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} +...\right)^{\mathrm{2}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{12}}{x}^{\mathrm{4}} +{O}\left({x}^{\mathrm{5}} \right)}{{x}^{\mathrm{4}} +{O}\left({x}^{\mathrm{5}} \right)}\:=\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com