All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 169756 by mokys last updated on 07/May/22
Answered by aleks041103 last updated on 07/May/22
A.y=3xV=∫23πy2dx=9π∫23dxx2=9π(1x)32==9π(12−13)=9π6=3π2=V
B.(a)V=∫03πy2dx=π∫03(2x2+3)2dx==π∫03(4x4+12x2+9)dx==π[45x5+4x3+9x]03==π(4.355+4.33+9.3)==π(36.335+5.33)==27π5(36+25)=27.61π5
Answered by thfchristopher last updated on 08/May/22
A.Forthecurverotatesx−axis,y=3xV=π∫23(3x)2dx=π∫239x2dx=−π[9x]23=3π2B.(a)Forthecurverotatesx−axis,Vx=π∫03(2x2+3)2dx=π∫03(4x4+12x2+9)dx=π[4x55+4x3+9x]03=783π5(b)Forthecurverotatesy−axis,x=y−32Whenx=3,y=21x=0,y=3∴Vy=π∫321y−32dy=π[y24−3y2]321=81π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com