Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 169756 by mokys last updated on 07/May/22

Answered by aleks041103 last updated on 07/May/22

A. y=(3/x)  V=∫_2 ^( 3) πy^2 dx=9π∫_2 ^( 3) (dx/x^2 )=9π((1/x))_3 ^2 =  =9π((1/2)−(1/3))=((9π)/6)=((3π)/2)=V

A.y=3xV=23πy2dx=9π23dxx2=9π(1x)32==9π(1213)=9π6=3π2=V

Answered by aleks041103 last updated on 07/May/22

B.  (a) V=∫_0 ^( 3) πy^2 dx=π∫_0 ^( 3) (2x^2 +3)^2 dx=  =π∫_0 ^( 3) (4x^4 +12x^2 +9)dx=  =π[(4/5)x^5 +4x^3 +9x]_0 ^3 =  =π(((4.3^5 )/5)+4.3^3 +9.3)=  =π(((36.3^3 )/5)+5.3^3 )=  =((27π)/5)(36+25)=((27.61π)/5)

B.(a)V=03πy2dx=π03(2x2+3)2dx==π03(4x4+12x2+9)dx==π[45x5+4x3+9x]03==π(4.355+4.33+9.3)==π(36.335+5.33)==27π5(36+25)=27.61π5

Answered by thfchristopher last updated on 08/May/22

A.  For the curve rotates x-axis,  y=(3/x)  V=π∫_2 ^3 ((3/x))^2 dx  =π∫_2 ^3 (9/x^2 )dx  =−π[(9/x)]_2 ^3   =((3π)/2)    B.  (a) For the curve rotates x-axis,  V_x =π∫_0 ^3 (2x^2 +3)^2 dx  =π∫_0 ^3 (4x^4 +12x^2 +9)dx  =π[((4x^5 )/5)+4x^3 +9x]_0 ^3   =((783π)/5)  (b) For the curve rotates y-axis,  x=(√((y−3)/2))  When x=3, y=21  x=0, y=3  ∴ V_y =π∫_3 ^(21) ((y−3)/2)dy  =π[(y^2 /4)−((3y)/2)]_3 ^(21)   =81π

A.Forthecurverotatesxaxis,y=3xV=π23(3x)2dx=π239x2dx=π[9x]23=3π2B.(a)Forthecurverotatesxaxis,Vx=π03(2x2+3)2dx=π03(4x4+12x2+9)dx=π[4x55+4x3+9x]03=783π5(b)Forthecurverotatesyaxis,x=y32Whenx=3,y=21x=0,y=3Vy=π321y32dy=π[y243y2]321=81π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com